
Eric Du Physics 110B
Lecture Notes Electromagnetism and Optics II July 19, 2025

Header styling inspired by Berkeley EECS Department: https://eecs.berkeley.edu/

Introduction

These is my compilation of notes from Chien-I Chiang’s Spring 2025 iteration of Physics 110B, a second course in electromagnetism
theory. The official textbook is Griffith’s Electrodynamics (5th edition), chapters 8 through 12. While most of the content here can
also be found in Griffiths, the purpose of writing this is to provide a different perspective on the content compared to the book, and
also in some cases to provide a derivation that is perhaps a bit more intuitive and easy to follow. On a more personal level these
notes also serve as a way for me to digitize my notes so that they don’t become lost to time.

Also, I have to thank to Andrew Binder (a former Berkeley student!) for helping me make some of the diagrams in these notes. He
saved me hours that I would have spent googling to make the diagrams as nicely as he did.
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1 January 22

To begin, we will start by writing out Maxwell’s equations:

∇ ·E =
ρ

ϵ0
(1.1)

∇ ·B = 0 (1.2)

∇×E = −∂tB (1.3)

∇×B = µ0J+ µ0ϵ0∂tE (1.4)

Along with the Lorentz force law:
F = q(E+ v ×B)

this is essentially a complete description of electrodynamics! These equations apply regardless of the situation, in vacuum with
sources and also in situations where matter is present. Recall that when we have physical matter present, there are the auxiliary
fields D and H which are easier to work with:

D = ϵ0(E× p)

H =
B

µ0
−M

where p is the polarization with units of dipole moment per volume, andM is the magnetization with units of magnetic dipole
moment per volume. In the case of polarization, recall that it is generated by bound charges, which are given by

ρb = −∇ ·P

Because of this distinction, it is sometimes convenient to write the total charge density ρ in two terms, as ρ = ρb + ρf , where ρf
denotes all the charge except those due to polarization. With this in mind, we can write equation 1.1 as:

∇ ·E =
1

ϵ0
(ρf + ρb) =

1

ϵ0
ρf − 1

ϵ0
∇ ·P

Moving the polarization to the left hand side allows us to write:

∇ · (ϵ0E+P) = ρf

The quantity on the left is sometimes represented asD ≡ ϵ0E+P, and is generally more useful in the case where we have materials
and P is nonzero. We also have a similar relationship for the magnetization M, where we usually write Jb = ∇×M. This should
make sense, since you can think of a magnet as having small loop currents inside that provide the magnetization. Thus, we can also
write J = Jb + Jf where Jf represents everything except the bound current. Thus, we can now rewrite the Ampere-Maxwell law:

∇×B = µ0(Jb + Jf ) + µ0ϵ0∂tE (1.5)

= µ0(∇×M) + µ0Jf + µ0ϵ0∂tE (1.6)

∴ ∇×
(

1

µ0
B−M

)
= Jf + ϵ0∂tE (1.7)

The quantity on the left is also denoted as H ≡ 1
µ0
B − M. In the case where we also have polarization, there is one further

simplification we can make, since the electric field generated by a polarized object also generates current. To see this, consider a
cylinder with charges +σb and −σb on both ends, and has a length dℓ. Then, we may write:

dI =
(dσb)(dA)

dt

J =
dI

dq
=

dσb

dt
=

dP

dt

So from this, we can conclude that Jp = ∂tP, which is sometimes called the polarization current. Because of this, we can now split
Jf into two more terms, by writing Jf = Jf+Jp. The orange Jf in this case now represents all the currents except Jb and Jp.
Now, because we can write ϵ0E = D−P, 1.7 now becomes:

∇×H = Jf+Jp + ∂tD− Jp = Jf+∂tD

and this is the form that we generally use in the case where there are materials present.
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2 January 24

In this lecture, we will first begin by discussing the classical continuity equation for charge, then use this equation to develop
equivalent equations for energy and momentum. From a high level standpoint, it is clear that the latter two quantities must also have
an associated continuity equation, since they are also conserved quantities. To begin, let’s start with the equation for conservation
of charge:

dQ

dt
= −

∮
∂V

J · da (2.1)

Because we can write Q as a volume integral of the charge density: Q =
∫
V ρ dτ , so we can write:

d

dt

∫
V
ρ dτ = −

∮
∂V

J · da

We can invoke the divergence theorem to transform the right hand side into a volume integral, and also move the total derivative
inside the integral turning it into a partial derivative:∫

V

∂ρ

∂t
dτ = −

∫
V
J · da

and since these two quantities must be equal at all times, then we arrive at the (local) continuity equation for charge:

∂ρ(r, t)

∂t
= −∇ · J (2.2)

2.1 Poynting’s Theorem

Recall from 110A that we have the following definition for the Poynting vector:

S =
1

µ0
(E×B) (2.3)

with units of energy per area per time. Similarly, recall the equations for the energy density stored in the electromagnetic field:

UE =
1

2
ϵ0|E|2

UB =
1

2µ0
|B|2

These two equations will become relevant later in the lecture. First, let’s establish our goal: because energy is a conserved quantity,
we want to find an equation of the same form as the one above, but for energy. To do this, we begin by considering the force on a
charge dq:

dF = dq(E+ v ×B)

Then, the power done by the electromagnetic field (work over time) over some volume V is:

dWEM

dt
=

∫
V
(ρ dτ)(E+ v ×B) · v dτ

=

∫
V
ρE · v dτ

=

∫
V
J ·E dτ

Now, we use the Ampere-Maxwell equation (eq. 1.4) to rewrite J purely in terms of B and E:

dWEM

dt
=

∫
V

(
1

µ0
(∇×B)− ϵ0∂tE

)
·E dτ

=

∫
V

1

µ0
(∇×B) ·E dτ −

∫
V
ϵ0(∂tE) ·E dτ
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Here, we will do the computation of each term separately, starting with the second term. Notice that it’s actually part of a product
rule, namely ∂t(E ·E), and when we expand the product rule we get two identical terms. Therefore, we can actually rewrite the
second term as: ∫

V
ϵ0(∂E) ·E dτ =

1

2

∫
V
ϵ0∂t(E ·E) dτ =

d

dt

∫
V

ϵ0
2
|E|2 dτ

Now we deal with the first term. To rewrite this term, it’s useful to use index notation to simplify the math. Review the index
notation from 110A if you need to, but the integrand becomes:

(∇×B) ·E = ϵijk(∂jBk)Ei = ϵijk∂j(BkEi)− ϵijkBk(∂jEi)

= −ϵijk∂j(BkEi)− ϵkijBk(∂jEi)

= −ϵijk∂j(BkEi) + ϵkjiBk(∂jEi)

Note that the Levi-Civita tensor ϵijk does not change under cyclic permutations of summation, but changes sign when we perform
a swap of two adjacent indices. Now, the first term gives∇ · (E×B), and the second term givesB · (∇×E). So, the first integral
becomes:

− 1

µ0

∫
V
∇ · (E×B) dτ +

1

µ0

∫
V
B · (∇×E) dτ

Now finally, we can use Faraday’s law (eq. 1.3) to write∇×E = −∂tB, which in the second term allows you to write it as 1
2µ0

|B|2.
Simultaneously, we use divergence theorem on the first term to write it as a surface integral:

− 1

µ0

∮
∂V

(E×B) da+
1

µ0

∫
V
B · (−∂tB) dτ = − 1

µ0

∮
∂V

(E×B) da− d

dt

∫
V

(
1

2µ0
|B|2

)
dτ

Now, we can put this all together:

dWEM

dt
= − 1

µ0

∮
∂V

(E×B) da− d

dt

∫
V

(
1

2µ0
|B|2 + ϵ0

2
|E|2

)
dτ

Moving the first term to the left hand side:

dWEM

dt
+

d

dt

∫
V

(
1

2µ0
|B|2 + ϵ0

2
|E|2

)
dτ = − 1

µ0

∮
∂V

(E×B) da (2.4)

This final equation known as Poynting’s theorem. Essentially, you can read it as follows:

d

dt

(
Eparticle + Eelectric + Emagnetic

)
= − 1

µ0

∮
∂V

(E×B) da

So the left hand side represents the change of energy in the volume V , and the right hand side represents the energy flow through
the surface of the volume V . From this equation, it’s easy to see that S represents the energy flux through the volume V , and
essentially shows us the direction of energy flow around a surface.

3 January 27

Last lecture, we derived the Poynting theorem, which gave us a continuity equation for energy. Today, our objective will be to
derive a similar continuity equation for momentum. Before we do that however, there are a couple of remarks we should make
about the Poynting vector. From last lecture, we have:

dEparticle

dt
+

dUEM

dt
= −

∮
∂V

(
E×B

µ0

)
da

where we established that the left hand side represents the change in energy density over time within the volume V . The right hand
side is the flux integral of the Poynting vector S = 1

µ0
(E×B), which has units of energy per unit time per area.

The first remark we should make is how we should intuitively interpret S. Consider a simple circuit, like the one shown below:
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Locally on the bulb, it’s not hard to derive that S points radially inward toward the load (a lightbulb). Because energy is being
expended by the bulb, the energy must come from somewhere, but where is it coming from? Initially it might seem like S tells us
that energy is coming from thin air, but what it’s really saying is that the energy is being taken away from the E and B fields, and
going into the bulb. In particular, the energy flow is as follows:

S → E-field → particles → bulb

Further, if you work out the math you will find that the S field points radially outwards

3.1 Continuity Equation for Momentum

To derive the continuity equation for momentum, we will invoke the same kind of logic we used to arrive at the conservation of
energy equations. First, we will begin with an equation that describes the change in momentum over time, which is incidentally the
equation for force:

dpparticle

dt
= F =

∫
(dq)(E+ v ×B)

exchanging q in favor of ρ, this integral becomes:

dpparticle

dt
=

∫
V
ρE+ J×B dτ

Now, our goal here will be the same as last lecture: we want to massage this equation into one which has a boundary term and also
a volume term. The former will represent the "flow" of momentum through the surface of V , and the volume term will represent the
momentum stored inside the volume V . To begin, we first invoke Gauss’s law and the Ampere-Maxwell law to rewrite ρ and J in
terms of E and B:

F i =

∫
[ϵ0(∂mEm)Ei +

1

µ0
(∇×B)jBk − ϵ0ϵ

ijk(∂tEj)Bk] dτ

=

∫
[ϵ0(∂mEm)Ei︸ ︷︷ ︸

1

+
1

µ0
ϵijkϵjmn(∂

mBn)Bk︸ ︷︷ ︸
2

− ϵ0ϵ
ijk(∂tEj)Bk︸ ︷︷ ︸

3

] dτ

We will deal with these terms separately, starting with the third term. We first rewrite this using the product rule as the difference
of two terms: ∫

ϵ0ϵ
ijk(∂tEj)Bk dτ = −

∫
ϵ0ϵ

ijk∂t(EjBk)− ϵ0ϵ
ijkEj(∂tBk) dτ

Then by Faraday’s law, we have∇× E = −∂tBk , so this allows us to write the second term using another Levi-Civita symbol:

− d

dt

∫
(ϵiϵ

ijkEjBk) dτ −
∫

ϵ0ϵ
ijkEj(ϵkmn∂

mEn) dτ

Now, we have the following identity when we have two Levi-Civita symbols (again, review the index notation if you need to):

ϵijkϵmnk = δimδjn − δinδ
j
m

We then use ϵkmn = ϵmnk , and invoke the above rule:

− d

dt

∫
(ϵ0ϵ

ijkEjBk) dτ −
∫

ϵ0(δ
i
mδjn − δinδ

j
m)Ej∂

mEn dτ

Finally, this term becomes:

− d

dt

∫
ϵ0ϵ

ijkEjBk dτ −
∫

ϵ0[En(∂
iEn)− Em(∂mEi)] dτ
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and that’s all we can do with the third term. We’ll deal with the first term next, which is pretty easy. Using the product rule, we get:∫
ϵ0(∂mEm)Ei dτ =

∫
[ϵ0∂m(EmEi)− ϵ0E

m∂mEi] dτ

Finally, we deal with the second term. We will begin in the same fashion as the previous term, by writing this using product rule:

− 1

µ0

∫
ϵjikϵjmn(∂

mBn)Bk dτ = − 1

µ0

∫
ϵjikϵjmn [∂

m(BnBk)−Bn(∂mBk)] dτ

= − 1

µ0

∫ (
δimδkn − δinδ

k
m

)
[∂m(BnBk)−Bn(∂mBk)] dτ

= − 1

µ0

∫
∂i∂kBk − ∂k(BiBk)−Bk(∂iBk) +Bi(∂kBk) dτ

The last term in this integral is ∇ ·B, which is always zero. Now, combining all the terms together, we get:

dpi
particle

dt
=

∫
dτ

[
ϵ0∂m(EmEi)− ϵ0E

m(∂mEi)− 1

µ0
∂i(BkBk) +

1

µ0
∂k(BiBk) +Bk(∂

iBk)− ϵ0En(∂
iEn) + ϵ0Em(∂mEi)

]
− d

dt

∫
ϵ0ϵ

ijkEjBk dτ

Moving the time derivative term to the other side, we get:

dpi
particle

dt
+

d

dt

∫
ϵ0ϵ

ijkEjBk dτ =

∫
dτ [stuff]

The "stuff" here is everything in the square brackets, and we will simplify this next time. But, notice that there are some things that
are already starting to come out of this equation. Namely, the second term in this equation is ϵ0(E×B) = ϵ0µ0S, so this term
represents the momentum carried by the electromagnetic fields. Next time, we will simplify the right hand side into a nicer form.

4 January 29

Last time, we partially derived the continuity equation, leaving the index jumble on the right side unsolved. We will continue now
by simplifying the right hand side. To begin, let’s write out what we had in the [stuff] term from last time:

[stuff] = ϵ0∂m(EmEi)− ϵ0E
m(∂mEi)− 1

µ0
∂i(BkBk) +

1

µ0
∂k(BiBk) +

1

µ0
Bk(∂iBk)− ϵ0En(∂

iEn) + ϵ0Em(∂mEi)

I’ve color-coded the terms here for clarity. First, we note the following: when two indices are being contracted, as is the case with
ϵ0Em(∂mEi), switching the upper and lower indices on them in the E and ∂ terms doesn’t change the value of the summation, so
this is equivalent to ϵ0E

m(∂mEi)1 . In other words, because the m is being contracted here, the two terms colored blue are equal
and cancel each other.

Next, let’s again go back to our goal with this equation. Ultimately, we want to get rid of the non-total derivative terms in this
expression, since we want some continuity equation. The terms in green are already total derivative terms, so we are happy with
those. The problematic terms are the ones in red, so we will deal with those.

Starting with ϵ0En(∂
iEn), we use product rule:

∂i(EnE
n) = (∂iEn)E

n + En(∂
iEn) = (∂iEn)E

n + (∂iEn)E
n = 2(∂iEn)E

n

Note that we can do this because when an index is summed over, we can switch the upper and lower indices freely. So now, overall
the expression becomes:

[stuff] = ϵ0∂m(EmEi)− 1

µ0
∂i(BkB

k) +
1

µ0
∂i(BiBk) +

1

2µ0
∂i(BkBk)−

ϵ0
2
∂i(EnEn)

= ϵ0

[
∂m(EmEi)− 1

2
∂i(EnEn)

]
+

1

µ0

[
∂m(BmBi)− 1

2
∂i(BkBk)

]
1In reality, the two quantities are related by a so-called "metric", δij , that allows transfer between upper and lower indices. In Cartesian coordinates, the metric

allows for the cancellation of the two blue terms, but in relativity with the Minkowski metric for example, this is not the case.
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We will now perform one final trick: notice we have some ∂m and ∂i terms, but ideally we want these two terms to be the same. So,
in order to enforce this, we change the ∂i terms to ∂m, but insert a δim term to compensate. Doing so, our equation becomes:

ϵ0

[
∂m(EmEi)− 1

2
∂m(δmiEnEn)

]
+

1

µ0

[
∂m(BmBi)− 1

2
∂m(δmiBkBk)

]
Now all the terms are a total derivative, so we are happy. Finally, we bring back the integral in front:

∫
V

dτ

ϵ0(EmEi − 1

2
δmiEnEn

)
+

1

µ0

(
BmBi − 1

2
δmiBnBn

)
︸ ︷︷ ︸

σmi

 =

∫
V
∂mσmi dτ

We will now call the term in the square brackets σmi, which is also known as the Maxwell Stress Tensor. Using divergence
theorem, we can transform this into a surface integral:∫

V
∂mσmi dτ =

∮
∂V

nmσmi da

nm represents the normal vector coming out of the surface of V . Finally, we can write the full equation:

dpi
particle

dt
+

d

dt

∫
V

Si

c2
dτ =

∮
∂V

nmσmi da (4.1)

How do we interpret this equation? The first term is the change in momentum of the particles, the second term represents the
momentum in the EM field, and the term on the right side can be thought of as a "generalized force" acting on the boundary of V .

4.1 Stress Tensors

Now would be a good time to talk a bit about how the Maxwell stress tensor behaves. Like the standard stress tensor for materials,
σmi represents the force in the i-th direction, on a surface whose normal vector points in them-th direction. That is, σii represents
pressure terms, while σij represents shear terms. That’s all for now, we will talk more about this equation and conservation of
momentum next lecture.

5 January 31

We’ll pick up where we left off from last time, talking about the momentum flux:

dpi
particle

dt
+

d

dt

∫
V

S

c2
dτ =

∮
∂V

σik dak

We mentioned how you can interpret this in two main ways: first, you can interpret this as an equation like F = dp
dt , and think

of the term on the right hand side as a generalized force Fi
net. The other way to think about it, and the way we will focus on, is

thinking of it as a continuity equation. So, in the same way charge is conserved, it is valid to think of this equation as

dpnet

dt
= −

∮
∂V

T ik dak

Here, we define T ik = −σik, so T is also a rank (2, 0) tensor. Intuitively, we think of this quantity as the momentum flux, or the
"flow of momentum" in or out of V . One thing to note is that T ik is defined so that outgoing flow is positive, which is the opposite
convention of σik . To complete the equation, it is actually nice to separate out the particle momentum from the field momentum, so
we write:

dpi
particle

dt
+

d

dt

∫
V

S2

dτ
= −

∮
V

(
T ik
EM + T ik

particle
)
dak

And here we’ve essentially defined a new tensor T ik
particle = mnvivk .
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Example 5.1: Radiation Pressure

In this example, imagine we have a "fluid of radiation", with a radiation pressure P . It is well known that P = 1
2UEM =

1
3

(
ϵ0
2 |E|2 + 1

2µ0
|B|2

)
. We will prove this using T ik .

Recall that the equation for σik is

σik = ϵ0

[
EiEk − 1

2
δik|E|2

]
+

1

µ0

(
BiBk − 1

2
δik|B|2

)
The pressure here is the diagonal term, as we mentioned from last time. Next, we make the observation that for a stationary
EM fluid (really just think about this as EM waves propagating out in all directions), then the system should be isotropic.
That is, there should not be a preference of one axis over another. Thus, we can write〈

E2
x

〉
=
〈
E2

y

〉
=
〈
E2

z

〉
=⇒

〈
|E|2

〉
=
〈
E2

x

〉
+
〈
E2

y

〉
+
〈
E2

z

〉
= 3

〈
E2

x

〉
The B field follows suit in the same way. And thus, the pressure P =

〈
σ11
〉
can be calculated as:

P =
〈
σ11
〉
= ϵ0

(〈
E2

x

〉
− 1

2

〈
|E|2

〉)
+

1

µ0

(〈
B2

x

〉
− 1

2

〈
|B|2

〉)
= ϵ0

(
1

3

〈
|E|2

〉
− 1

2

〈
|E|2

〉)
+

1

µ0

(
1

3

〈
|B|2

〉
− 1

2

〈
|B|2

〉)
= −1

6

(
ϵ0
〈
|E|2

〉
+

1

µ0

〈
|B|2

〉)
= −1

3
UEM

Note the reason this is negative here is because we use T ik instead of σik , which are opposite to each other in sign. That is,
because radiation flows away from an object, this is seen as "negative pressure".

One thing to note about σik is that it is a symmetric tensor, σik = σki. To see why this is necessary, consider a cube in space (see
diagram), and we have a nonzero σ21 acting on it. Then, there is a shear acting in the x̂ direction, and an equivalent one acting on
the back of the cube in the −x̂ direction. In order for this to not generate an angular momentum on the cube, it is necessary that we
have σ12 on the other two sides in order for the torque to cancel out, and for the cube to remain stationary. In other words, the
takeaway is this:

In order for angular momentum to be conserved locally, the stress tensor must be symmetric.

5.1 Energy and Momentum for the EM Field

Recall that S represents the energy flux, and we mentioned earlier that the second term in 4.1 is an integral of the momentum in the
EM field, so naturally we can think of 1

c2S as the momentum density in the fields. Now, consider a small cylinder with energy UEM

and cross sectional area A. Then, the energy flow through A can be written as:

S = energy flow through A =
energy passing through

area
=

UEM(c∆t)A

Aδt
= UEMc

The length is c∆t because EM waves travel at the speed of light. Now, since the momentum density P⃗ is written as 1
c2S, then we

have the equation:
|P⃗|c2 = UEMc =⇒ |P⃗|c = UEM

Finally, recall that in special relativity, we have the relation E2 = p2c2 +m2c4, and since photons are thought of as electromagnetic
waves, comparing these two conclusions forces us to conclude that photons are massless!

And this discussion concludes the content for chapter 8. Next, we will enter chapter 9, where we talk about electromagnetic waves.
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5.2 EMWaves

Recall from your introductory classes that a sinusoidal plane wave propagating in the x̂ direction can be described by

ϕ(r, t) = A cos(kx− ωt+ δ)

We can also write this as a complex exponential, leveraging Euler’s identity eiθ = cos θ + i sin θ:

ϕ(r, t) = Re
[
Aei(kx−ωt)eiδ

]
= Re

[
Ãei(kx−ωt)

]
Here, we let Ã = Aeiδ , so A ∈ R while Ã ∈ C. We don’t have time to continue this discussion, but a primer for what we will be
doing next lecture, we will explore the formalism behind the equation for a plane wave that travels in multiple dimensions. That is,
we will explain why when dealing with more than one dimension, we write:

ϕ′(r, t) = Re
[
Ãei(k·r−ωt)

]
with |k| = 2π

λ . In particular, why do we have k · r?

6 February 3

Last time, we started our discussion of plane waves, specifically why we can treat k as a vector when we deal with multidimensional
plane waves.

6.1 Expression of Scalar Sinusoidal Plane Waves

Let’s go back to our discussion of a plane wave in 3D space. Recall from earlier physics classes that there are basically two ways to
rotate an object in space: by rotating your coordinate axis, or rotating the object itself. The former is the passive transformation,
and the latter is the active transformation. In the active picture, a vector v transforms as:

v′ = Rv

where R is the standard rotation matrix:

R =

[
cos θ − sin θ

sin θ cos θ

]
So, for a wave ϕ(r), then the rotated wave is written as ϕ′(r) = ϕ(R−1r), since R−1r gives us the point prior to rotation which we
should read off to get the intensity of ϕ. Computing R−1r explicitly, we have:

R−1r =

[
cos θ sin θ

− sin θ cos θ

][
x

y

]
=

[
cos θx+ sin θy

− sin θx+ cos θy

]

In one dimension, our plane wave has the form ϕ(x, y) = Aei(kx−ωt), so we only need to read off the x component, so:

ϕ′(x, y) = Aei[k(cos θx+sin θy)−ωt] = Aei[(k cos θ)x+(k sin θ)y−ωt]

And now, we see why it makes sense to treat k as a vector. If we define k = |k| cos θx̂+ |k| sin θŷ = kxx̂+ kyŷ, then we can write
this as:

ϕ(x, y) = Aei[kxx̂+kyŷ−ωt] = Aei(k·r−ωt)

Ignore the fact that we cheated a little since on one side the exponential is a vector quantity, but hopefully this gives enough
intuition. Now we move to the main part of today’s lecture, discussing about EM waves in a vacuum.
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6.2 EMWaves in a Vacuum

In a vacuum, where ρ = 0 and J = 0, then Maxwell’s equations reads:

∇ ·E = 0

∇ ·B = 0

∇×E = −∂tB

∇×B = µ0ϵ0J

Our goal is to show that Maxwell’s equations implies the wave equation, which isn’t very hard. To do this, we first take the curl of
Faraday’s law:

∇× (∇×E) = −∂t(∇×B)

Expanding using product rule:
∇(∇ ·E)−∇2E = −∂t(µ0J+ µ0ϵ0∂tE) = −µ0ϵ0∂

2
tE

And as such, we arrive at the wave equation: (
∇2 − µ0ϵ0∂

2
t

)
E = 0 (6.1)

Now, we want to show that any function of the form f(n̂ · r− vt) is a solution to the wave equation. Here, we define n̂ as the unit
vector pointing along the direction of wave propagation, or in other words, the direction which is perpendicular to the wavefront.
To begin checking, we first note that a single derivative of f is:

∂if =
∂uj

∂xi

∂f

∂ui
= δji

∂f

∂uj

As such, the Laplacian is equal to:

∇2f = δij
∂

∂xi

∂

∂xj
f = δijninj

d2f

du2
=

d2f

du2

Since n is a unit vector, then nini is a unit vector. The time derivative is:

∂tf =
∂u

∂t

df

du
= −v

df

du
=⇒ ∂2

t f = v2
d2f

du2

If we now plug these into the wave equation, we do see that it comes out to be zero. Then, this justifies writing the wave as

Ei = Re
[
Ãj

ke
i(k·r−ωt)

]
Here, Ak represents the amplitude of the k-th mode, or basically the amplitude in the k-th direction. Now, we compute derivatives
again, so

∂Ej

∂xm
= Re

[
Ãi

ki
∂

∂xm
(knxn − ωt) ei(k·r−ωt)

]
And since ∂xn

∂xm = δnm, then we have:
∂Ej

∂xm
= Re

[
Ãi

k(ikm)ei(k·r−ωt)
]

So the Laplacian term is:

∇2Ej =
∂

∂xm

∂

∂xm

(
Re
[
Ãj

ke
i(k·r−ωt)

])
= Re

[
Ãj

k(ik
m)(ikm)ei(k·r−ωt)

]
= Re

[
Ãj

k(−kmkm)ei(k·r−ωt)
]

And now for the time derivative:

∂2Ej = Re
[
Ãj

k(−iω)(−iω)ei(k·r−ωt)
]
= Re

[
Ãj

ke
i(k·r−ωt)

]
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Putting these two together, we see that if we want to satisfy the wave equation, we require that |k|2 = µ0ϵ0ω
2 = 1

cω
2, which

implies that |k| = 2π
λ . This derivation is really where the 2π

λ term comes from.

Now, we will look at some more properties of the wave equation. First, we can show pretty easily that Ej must be perpendicular to
the propagation direction. This must be true since there are no charges, so∇ ·E = 0, hence:

∇ ·E = ∂mEm Re
[
Ãm

k ∂mei(k·r−ωt)
]
= Re

[
Ãm

k (ikm)ei(k·r−ωt)
]

In order for this to be zero, we require that Ãm
k ·km = 0, or in other words we need theE field to be perpendicular to the propagation

direction. Similarly, we can show that B is perpendicular and in phase with E, by making use of Faraday’s law:

∇×E = −∂tB =⇒ B = −
∫

∇×E dt

Therefore,

Bm = −
∫

ϵmij∂i Re
[
(Ãk)je

i(k·r−ωt)
]
dt

= −
∫

ϵmij∂i(iki)Re
[
Ãkje

i(k·r−ωt)
]
dt

= Re

[
ϵmij−iki

−iω
(Ãk)je

i(k·r−ωt)

]
So, because we have ω = c|k|, then Bm = ϵmij ki

c|k|Ej , so

B =
1

c
k̂×E (6.2)

and hence B is perpendicular and in phase with E.

7 February 05

Today, we will discuss the wave speed in a linear medium. To begin, recall from the first lecture that in a material, Maxwell’s
equations read as follows:

∇ ·D = ρf ∇×E = −∂tB

∇ ·B = 0 ∇×H = Jf + ∂tD

Now, we will consider the special case where we have a medium where there are no free charges, no free currents, and the medium
is linear. The first two conditions implies that ρf and Jf are zero, and the last condition implies that D = ϵE and B = µH. Here, ϵ
and µ are constants. So, Maxwell’s equations now read:

ϵ(∇ ·E) = 0 ∇×E = −∂tB

∇ ·B = 0
1

µ
(∇×B) = ϵ∂tE

Notice, these four equations look exactly the same as Maxwell’s equations in a vacuum, except now we’ve replaced ϵ0, µ0 with ϵ, µ.
So, this means that in linear media, E and B are still expected to satisfy the wave equation:

(∇2 − µϵ∂2
t )E = 0

(∇2 − µϵ∂2
t )B = 0

These waves propagate with speed v = 1√
µϵ . It should make sense that these two quantities parametrize the wave speed, since

they tell us how easy it is to polarize and magnetize the material, so in a sense it tells us how easy it is for light to "move through"
the material. But, how do we provably show that increasing µ or ϵ, then the wave speed decreases? To see why, let’s consider our
travelling wave as a result of "dipole radiation".
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7.1 Dipole Radiation

Consider a bulb, which emits a sinusoidal electric field Eprimary, that now encounters a plane made of a different medium (glass,
water, etc.). The E field emitted by the bulb will now oscillate the charges in the glass, according to x(t) = x0 cos(ωt). The electric
dipole moment, is given by p(t) = qx(t) = qx0 cos(ωt). Based on this motion, the electric field generated is given by

E =
1

4πϵ0c2
sin θ

r
qω2x0 cos

[
ω
(
t− r

c

)]
θ̂

The details for why this is will come in when we cover chapter 11. For now, notice that here the E field drops off with 1
r rather than

1
r2 like a point charge. Now, what is the field created by the entire slab? Let’s consider the geometry of the slab as follows:

ρ

z P

rθ

Assuming the point P is far enough away so that θ ≈ π
2 , then the E field becomes:

E =
1

4πϵ0c2
qω2x0

r
cos
[
ω
(
t− r

c

)]
θ̂

Now to find the contribution due to the whole plane, we just integrate over the entire plane:

E =
1

4πϵ0c2

∫
sheet

qω2x0

r
Re
[
eiω(t−r/c)

]
2πρη dρ

Here, we define η to be the dipole density, so the number of dipoles per unit area. We have r2 = ρ2 + z2, so r dr = ρ dρ, and hence:

E =
qω2x0

2ϵ0c2

∫ ∞

z

Re
[
eiω(t−

r
c )
]
η dr

Now, if you assume that the sheet is uniform, then η = η0, so we have:

E =
qω2x2

0η0
2ϵ0c2

∫ ∞

z

Re
[
eiω(t−

r
c )
]
dr =

qωx2
0η0

2ϵ0c2
Re

[
c

−iω
eiωt

(
e−iω(∞)/c − e−iωz/c

)]
But the term in square brackets clearly diverges, so something has gone wrong here. In particular, it turns out that our assumption
that the dipole density is a constant, η = η0, is not physical. So, we need to "regularize" it by introducing a cutoff scale Λ. We will
do it as follows. Instead of letting η(r) be a constant, we will instead define it as:

η(r) =

η0
(
1− r

Λ

)
r < Λ

0 r > Λ

It turns out that we not only need to regularize η, but also do so in a way that is continuous. If we were to just introduce an abrupt
cutoff to η(r), then that discontinuity will also cause issues. When we do this integral now, we will first assume Λ is finite, then
take Λ → ∞ after computing the integral. Now, using this refined η(r), we get the following result:

E =
qx0ω

2η0
2ϵ0c2

∫ Λ

z

Re
[
eiω(t−

r
c )
(
1− r

Λ

)]
dr

=
ω2

2ϵ0c2
qx0η0 Re

{
eiωt

[
c

−iω
eiωΛ/c − c

−iω
e−iωz/c +

c

iω
e−iωΛ/c − c

iω

z

Λ
e−iωz/c − c

ω2

1

Λ
e−iωΛ/c +

c2

ω2

1

Λ
e−iωz/c

]}
Now, taking Λ → ∞, all 1

Λ terms die off, and the two blue terms cancel each other. So, we end up getting the result:

E =
ω2

2ϵ0c2
qx0η0 Re

[ c

iω
eiω(t−

z
c )
]
=

ω

2ϵ0c
qx0η0 sin

[
ω
(
t− z

c

)]
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Then, remembering that x(t) = x0 cos(ωt), then v(t) = −x0ω sin(ωt), so:

E = − qη0
2ϵ0c

v
(
t− r

c

)
And that’s all we have for now. One thing you may have noticed in this integral is that the Λ term didn’t actually end up mattering
– we could have chosen the cutoff to be any number, and it would have disappeared just the same. We will see why this is the case
on Friday.

8 February 7

Last time, we left off after computing the integral for E, and we found that Λ doesn’t matter since it got canceled out after the
computation. Now, we will discuss why this is true. Recall that the integral we wanted to compute was∫ ∞

z

e−iωr/c dr

First, let’s define θ = ω
r , so dθ = ω

c dr, and our integral becomes:∫ ∞

θ0

e−iθ c

ω
dθ

This integral lends itself to a very nice intuition: we can think of it as just adding up a bunch of complex numbers together. Adding
complex numbers in the complex plane can be thought of as vector addition, so computing the integral is the same as adding up the
vectors in the following diagram:

θ0

e−iθ0( c
ω dθ)

dθ

e−i(θ0+dθ)( c
ω dθ)

Essentially, we start with a vector at an angle θ0, then we continually add vectors of the same "length" together, all the while
changing the angle slightly by dθ. If we continue this process, we eventually loop back around to the origin. What this ultimately
means is that when we integrate from θ0 to infinity, we end up traversing this loop infinitely many times, which is why the integral
diverges.

Now, when we add a Λ term, what happens is that the "length" of the vector we add each time decreases, so instead of the addition
coming out to a circle, it ends up as a spiral. Further, if η(θ) decreases slowly enough (so make Λ sufficiently large, but not infinite),
then the integral will converge at the center of the earlier circle. So, the integral looks something like the following diagram:
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∫ ∞ θ 0
e
−
iθ

0
c

ω
η(
θ)

θ0

What does the integral converge to? From the geometry, the resulting vector is perpendicular to the initial vector, so we have:∫ ∞

θ0

e−iθ c

ω
η(θ) = Re−i(θ0+π/2)

To find the radius R, we also use geometry, to get R dθ = c
ω dθ, so we get R = c

ω . This now explains why Λ doesn’t matter, since
whatever value of Λ chosen, we will converge to the center of the circle. So, the integral becomes:∫ ∞

z

e−iωr/c dr =

∫ ∞

θ0

e−iθ c

ω
dθ = Re−i(θ0+π

2 ) =
c

ω
(−i)e−iωz/c

So now applying this to the integral for E, we get the result from last lecture:

E =
qωx0η0
2ϵ0c2

Re
[c
i
eiω(t−

z
c )
]

8.1 The "Delayed" Wave

Now, let’s consider the following system, with a source which emits an electric field Esource and a point P far away, and we place a
thin sheet of linear media in between the two. The sheet has thickness ∆z. Phenomenologically, we know that light travels slower
in glass compared to vacuum, by a ratio of v = c

n , so the wave will take extra time to arrive at P . In particular, the extra time is
given by:

∆t =
∆z

v
− ∆z

c
= (n− 1)

∆z

c

So, with the glass in between, we have to add this ∆t term into the exponential, and thus:2

E(t, z) = E0e
iω(t−∆t− z

c ) = E0e
iω(t−n−1

c ∆z− z
c )

If the slab is assumed to be very thin, then we can extract the ∆z term, and Taylor expand it:

E(t, z) = E0e
−iω n−1

c ∆ze−iω(t− z
c )

= E0

(
1− i

n− 1

c
∆z

)
eiω(t−

z
c )

= E0e
iω(t− z

c ) − i(n− 1)ω∆z

c
E0e

iω(t− z
c )

The first term can be thought of as just Esource, while the second term can be thought of as the wave produced by the charges in the
material.

8.2 A Microscopic Model

Now, let’s consider what happens in the glass itself. When a sinusoidal source electric field Esource = E0e
iωt contacts the glass, it

will oscillate the charges inside the glass. Microscopically, each dipole in the glass is in a potential well, which usually looks like the
following:

2We are being a bit lazy with the notation here, E should be a vector quantity but we only care about its magnitude for now so we’ll treat it as a scalar.
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x

U

xeq

Here xeq marks an equilibrium point, around which the charge oscillates. It is a (global) minimum, so the first derivative is zero, and
hence its Taylor expansion around xeqis:

U = U(xeq) +
1

2
U ′′(xeq)(x− xeq)

2

This should be somewhat familiar from classical mechanics. The equation of motion, according to Newton’s equation, is given by:

mẍ = −mω2
0x+ qE0e

iωt

Intuitively, when the electric field gives the charge some energy, the charge will oscillate with a sinusoidal motion as well, so let
x(t) = x0e

iωt. Putting this ansatz into the equation of motion, we get:

−mω2x0e
iωt = −mω2

0x0e
iωt + qE0e

iωt =⇒ x0 =
qE0

m(ω2
0 − ω2)

This implies that the motion for x(t) is:

x(t) =
qE

m(ω2
0 − ω2)

eiωt

Combining this result with what we have at the end of last lecture for E, we have the following equation for the electric field of the
dipole:

Edipole = Re

[
−i

qω

2ϵ0c

qE0N∆z

m(ω2
0 − ω2)

eiω(t−
z
c )
]

Here, N∆z = η0, which is the density of charges per volume.

9 February 10

Today, we will talk about the transmission and reflection of waves in a linear medium. We will find that all the properties we know
about reflection and transmission: Snell’s law, the law of reflection, they all follow directly from enforcing the boundary conditions
given by Maxwell’s equations.

Recall Maxwell’s equations in a linear medium:

∇ ·D = 0

∇ ·B = 0

∇×E = −∂B

∇×H = ∂D
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These equations then imply the following boundary conditions:

ϵ1E
⊥
1 = ϵ2E

⊥
2 (9.1)

E
∥
1 = E

∥
2 (9.2)

B⊥
1 = B⊥

2 (9.3)

µ1B
∥
1 = µ2B

∥
2 (9.4)

This is a result of using the relations D = ϵE and B = µH in linear media. Now, with these boundary conditions set, we are ready
to consider the transmission and reflection of waves in a linear medium.

9.1 Normal Incidence

First, we will consider the case where the incident wave is perpendicular to the interface. This makes the situation easier to analyze.
Let the system be described as follows: we have an incident wave from the left, and a plane of material at z = 0. Then, the E field
over all space is given by:

E =

EIe
i(k1z−ωt) +ERe

i(−k2z−ωt) z < 0

ET e
i(k2z−ωt) z > 0

Technically, we need to take the real part of these equations, but we’re going to omit that detail for now.3 Before we go further, it is
important to note that ω is the same for all three terms, which we can argue to be the case in two different ways. Firstly, if you
think of the incident wave as an electric field, then it makes sense that the response from the dipoles should also follow the same
frequency. Mathematically, we also know that ω must be the same because when we end up matching the boundary conditions, we
end up getting an equation of the form:

Ae−iωIt + Be−iωRt = Ce−iωT t

Here, A,B and C are arbitrary constants. If we want this equation to hold up for all time t, then the only way is if ωI = ωR = ωT .
Now, we begin to impose the boundary conditions. The waves here are only in the ẑ direction, since E and B are transverse waves,
so EI ,ER and ET are all in the xy plane. This immediately means that boundary conditions 9.1 and 9.3 are trivially satisfied, and
hence we only care about 9.2 and 9.4. Starting with 9.2:

EIe
−iωt +ERe

−iωt = ET e
−iωt

so this gives EI = ER = ET . Similarly, we can write down equations for the magnetic field:

B =

BIe
i(k1z−ωt) +BRe

i(k1z−ωt) z < 0

BT = ei(k2z−ωt) z > 0

Boundary condition 9.4 then says:
1

µ1
(BI +BR) =

1

µ2
BT

We know that the B field travels in the z direction, so using equation 6.2, we can write:

ẑ×E1 − ẑ×ER = βẑ×ET

We absorb all the constants into β = µ1v1
µ2v2

. Without loss of generality, we can also suppose E aligns in the x̂ direction, so then we
can write:

ER = ERn̂R = ER(cos θRx̂+ sin θrŷ)

ET = ET n̂T = ET (cos θT x̂+ sin θT ŷ)

3What this really means is that each bold-faced vector E in this equation is a complex-valued vector, of which you have to take the real part to get the amplitude.
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Then, the y-component of boundary condition 9.2 gives ER sin θR = ET sin θT , whereas the x-component of boundary condition
9.4 gives ER sin θR = −βET sin θT . These two equations must simultaneously be true, and since β > 0, this forces θR = θT = 0.
So, we find that the reflected and transmitted waves have the same polarization as the incident wave!

Then, comparing the x-component of 9.2 we get EI +ER = ET , while the y-component of 9.4 gives EI −ER = βET . Solving
both equations gives:

ET =
2

1 + β
EI , ER =

1− β

2
ET =

(
1− β

1 + β

)
EI

And this solves the boundary conditions for this specific situation! To conclude this lecture, notice that for most materials
µ1 ≈ µ2 ≈ µ0, so in these cases β ≈ v1

v2
. Further, if we have a medium where v1 > v2 (for example, from air to water), then β > 1,

so the reflected wave is written as:

ER = −
∣∣∣∣1− β

1 + β

∣∣∣∣ EI =

∣∣∣∣1− β

1 + β

∣∣∣∣ eiπ (E1e
iδI
)
=

∣∣∣∣1− β

1 + β

∣∣∣∣EIe
i(δI+π)

This result actually is the motivation for why we say that the reflected wave has a π phase shift relative to the incident wave, and
all we needed to do was solve some boundary conditions to get it!

10 February 12

Last time, we derived the intensity of ER and ET in terms of EI , where we have:

ER =

(
1− β

1 + β

)
EI ET =

2

1 + β
EI

Now, recall that since S = 1
µE×B, then in a linear medium, because of equation 6.2, we can rewrite this as S = 1

vE× ( 1vk×E),
so the time average of S is written as:

⟨S⟩ = E2

µv

〈
cos2(kz − ωt)

〉
=

E2

2µv
∝ E2

So, the average reflection, which is denoted as:

R ≡ ⟨SR⟩
⟨SI⟩

=

1
2µ1v1

|ER|2
1

2µ1v1
|EI |2

=

(
1− β

1 + β

)2

Since µ1 ≈ µ2 for most materials, then β ≈ v1
v2
, so most of the time,

R =

(
v2 − v1
v2 + v1

)
Similarly, we have a transmission coefficient

T ≡
1

2µ2v2
|ET |2

1
2µ1v1

|EI |2
≈ v1

v2

(
2

1 + β

)2

=
4v1v2

(v1 + v2)2

And as a sanity check, we should get R+ T = 1 because of energy conservation, which is exactly what we have:

R+ T =
(v2 − v1)

2

(v2 + v1)2
+

4v2v1
(v1 + v2)

= 1

This, above all else, gives us confidence that the math carried out properly.

10.1 Oblique Incidence

Now, we will consider the more general case, where the incident wave is no longer perpendicular to the boundary. Here, we will see
that a simple application of boundary conditions leads to fundamental laws of reflection and refraction. Consider the following case
of oblique incidence:
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z

x

kI

kR

kT

the laws of optics don’t change when we have oblique incidence, so we will still impose the boundary condition that the transition
is continuous. Therefore, we should expect the equations on both sides of z = 0 to match. Just like the perpendicular incidence,
when we match the boundary condition at z = 0 we will get equations of the form:

( ) eikI ·r
∣∣∣∣
z=0

+ ( ) eikR·r
∣∣∣∣
z=0

= ( ) eikT ·r
∣∣∣∣
z=0

For this equation to be true for all t, then we require that we have the same dependence in the xy plane for all three terms. This
implies the conditions:

(kI)xx+ (kI)yy = (kR)xx+ (kR)yy = (kT )xx+ (kT )yy (10.1)

Now, without loss of generality, we can choose kI to lie in the xz plane only, so (kI)y = 0. But this must mean that the y component
for the other two terms is also zero! Therefore, all the rays lie in the same plane, and therefore our original diagram is accurate.

Further, this also means that from 10.1 we get that (kI)x = (kI)y = (kI)z , and hence:

kI sin θI = kR sin θR = kT sin θT

But since |kI | = |kR| as they travel through the same medium, then the only conclusion is that θI = θR, which is the reflection
rule. The other condition we then becomes

ω1

v1
sin θI =

ω

v2
sin θT =⇒ 1

v1
sin θI =

1

v2
sin θT

Given that n = c
v , then we can manipulate this further to get:

n1 sin θI = n2 sin θT

which is Snell’s law!

10.2 Polarized Light

Now, we will consider the case where the light is polarized. First, we will consider light that is polarized in the plane of incidence
(the case perpendicular will be left as homework):

z

x

kI

kR

kT
θout

θin

θin

EI

ER

ϕR

ET

ϕT
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To begin, we will consider the most general case, so we do not assume here that ET and ER lie in the plane of incidence. This is
why we have the ϕT and ϕR angles. The boundary conditions don’t change despite this though, and applying them here gives us:

ϵ1(EI +ER)z = ϵ2(ET )z (10.2)

(EI +ER)x,y = (ET )x,y (10.3)

(BI +BR)z = (BT )z (10.4)
1

µ1
(BI +Br)x,y =

1

µ2
(BT )z (10.5)

From the vector decomposition, we can also get these relations (check these yourself on your own time):

EI = −EI sin θinẑ+EI cos θinx̂

ER = ER [cosϕR sin θinẑ+ cosϕR cos θinŷ + sinϕRŷ]

ET = ET [− cosϕT sin θoutẑ+ cosϕT cos θoutx̂+ sinϕRŷ]

Combining the vector decomposition and the boundary conditions, we get the following set of equations:

(10.2): ϵ1 sin θin(EI + ER cosϕR) = ϵ2 sin θout(−ET cosϕT ) (10.6)

(10.3):

cos θin(EI + ER cosϕR) = cos θout(ET cosϕT )

ER sinϕR = ET sinϕT

(10.7)

(10.4):
ER

v1
sinϕk sin θin =

ET

v2
sin θT sin θout (10.8)

(10.5):

ER

v1
cos θin sinϕR = − ET

µ2v2
cos θout sin θT

1
µ1v1

(EI − ER cosϕR) =
1

µ2v2
ET cosϕT

(10.9)

Combining the second part of 10.7 with the first part of 10.9, we can get:

ER sinϕT cos θin = −βET sinϕT cos θout =⇒ sinϕT (cos θin + β cos θout) = 0

The only way this equation is true for all θin is if ϕT = 0, which then implies that ϕR = 0 by the second half of 10.7. So, what we
find is that indeed ER and ET do lie in the plane of incidence.

11 February 14

Last time, we showed that for waves with EI in the incident plane, the reflected and transmitted waves have the same polarization.
That is, we found that ϕR = ϕT = 0. So, the six boundary conditions we had from before now transform into:

ϵ1 sin θin (EI − ER) = ϵ2 sin θoutET (11.1)

cos θin(EI + ER) = cos θoutET (11.2)

(EI − ER) = βET (11.3)

Reminder that β = µ1v1
µ2v2

. Here, we see that equation 11.1 is actually the same condition as 11.3, but written in a different form. To
see this, we have:

(EI − ER) =
ϵ2 sin θout
ϵ1 sin θin

ET =
ϵ2v2
ϵ1v1

ET =
µ1v

2
1v2

µ2v22v1
ET =

µ1v1
µ2v2

ET = βET

So now this means that we essentially have two boundary conditions:

EI + Er = αET (EI − ER) = βET

So, we can solve for ET :
ET =

2

α+ β
ER =

α− β

α+ β
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Now, some comments about these results. Firstly, ET always has the same sign as EI , so this means that the transmitted wave has
no phase shift. However, depending on α− β, the reflected wave may pick up a π phase shift, specifically when β > α. In the case
where we have normal incidence, then α = 1, so this is why the reflected wave always picks up a phase shift. We can also rewrite α:

α =
cos θout
cos θin

=

√
1− sin2 θout
cos θin

=

√
1−

(
n1

n2

)2
sin2 θin

cos θin

This results means that there is always a θin such that α − β = 0, and in this case no reflection occurs. This θin is the so-called
Brewster angle.4

11.1 Brewster’s Angle

What’s the explicit form of θB , the critical angle? We can find θB by setting α = β:

β =

√
1−

(
n1

n2

)2
sin2 θB

cos θB
=⇒ sin2 θB =

1− β2(
n1

n2

)2
− β2

In the case where µ2 ≃ µ1 ≃ µ0, then this equation becomes:

sin2 θB =
1− β2

1
β2 − β2

=
β2(1− β2)

1− β4
=

β2

1 + β2
=⇒ sin θB =

β√
1 + β2

We can then draw a right triangle with hypotenuse
√
1 + β2, which gives tan θB = n2

n1
. What’s the physical intuition for this

phenomenon? One way you can convince yourself of this phenomenon is to consider the microscopic picture of dipole radiation.
Consider a dipole:

− + ×
Estatp

Now, consider the field at the point Estat. The field lines can only be horizontal due to symmetry, but this immediately means
that such a field cannot be caused by a wave travelling in this direction, since k ⊥ E. Therefore, for a dipole there is no wave
propagation along the direction of the dipole moment p. We can also provably show this using the dipole radiation equation, which
will come in chapter 11.

Anyways, what this means for our system is that whenever the dipoles end up oscillating in the direction that the reflected wave
would propagate in (according to the law of reflection), then there is no reflected wave. This angle also happens to be perpendicular
to kT . From this observation, because kT ⊥ kR, then we can write:

θB + θout =
π

2

By Snell’s law, n1 sin θB = n2 sin θout = n2 cos θB , and indeed from here we get the Brewster angle tan θB = n2

n1
.

11.2 Reflection and Transmission Coefficient

Now let’s go back to the diagram we made from earlier. Based on the way the waves propagate, we know that there should be
energy propagating in the x direction. By the conservation of energy, we know that Iz,in = Iz,out along the boundary. To be specific,
here I represents an intensity, with units of energy flow per area per time. Given these units, it makes sense to use the Poynting
vector to calculate this:

|Iz,R| = |SR · ẑ| = ERBR

µ1
cos θin =

E2
R

µ1v1
cos θin

where we use the relation that |B| = |E|
v1

for waves. The incoming intensity can also be calcualted:

|Iz,I | = |SI · ẑ| =
EI

µ1v1
cos θin

4This is the reason we can attach a polarizing filter onto a camera lens and get rid of reflections that come off the glass.
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Combining these two equations, we get:

R =
|Iz,R|
|Iz,I |

=
E2

R

E2
I

=

∣∣∣∣α− β

α+ β

∣∣∣∣2
Similarly, the transmission can also be calculated as Iz,T =

E2
T

µ2v2
cos θout, so:

T =
|Iz,T |
|Iz,I |

=
µ1v1
µ2v2

|ET |2

|EI |2
cos θout
cos θin

= αβ

(
2

α+ β

)2

Indeed, if you add these two up, you get R+ T = 1, as required by conservation of energy.

11.3 Total Internal Reflection

Another phenomenon that is a result of these rules is total internal reflection. This occurs when θout =
π
2 , which gives us α = 0.

Looking at our formulas for R and T , this gives:

R =

∣∣∣∣α− β

α+ β

∣∣∣∣2 = 1 T = αβ

∣∣∣∣ 2

α+ β

∣∣∣∣2 = 0

So we get no energy transmitted. What happens if we go past this critical θc? Well, the effect is that sin θout becomes imaginary. To
see why, consider Snell’s law:

kI sin θI = kT sin θT =⇒ sin θT =
n1

n2
sin θI

If n1 > n2, then there evidently will be an angle θI such that sin θT > 1, which is not possible if we are to interpret θT as an angle.
One natural question one could ask then is, instead of allowing for the possibility of sin θT to exceed 1, why not say that Snell’s law
doesn’t hold anymore? The reason for this is that Snell’s lawmust hold, as it is simply a product of the boundary conditions imposed
by Maxwell’s equations. Thus, saying that Snell’s law doesn’t hold is the same as saying that we violate Maxwell’s equations, and of
course we can’t allow that.

12 February 19

Today, we will continue our discussion from last time about total internal reflection. Last time, we left off with acknowledging that
in the case where we move an angle θI past the critical angle for total internal reflection θc, that the sin θT term becomes imaginary.
To further explore this concept, consider now the equations for the electric field on both sides of the medium:

E =

Re
{
ẼIe

i(ki·r−ωt) +ER

}
ei(kR·r−ωt) z < 0

Re
{
ẼT e

i(kT ·r−ωt)
}

In the case where we don’t have total internal reflection, it was natural to write kT = kT cos θT ẑ+ kT sin θT x̂. This was natural
specifically because you could imagine decomposing the vector kT into its x and z components. Now, the trick when sin θT > 1 is
to stop treating this as a geometric picture, but instead just interpret cos θT and sin θT as a way to parametrize kT in terms of θT .
This way, this decomposition is still allowed. Thus, we can still use Snell’s law:

sin θT =
v2
v1

sin θI

Similarly, we can expand cos θT :

cos θT =

√
−(sin2 θT − 1) = i

√(
n1

n2
sin θI

)2

− 1 = i
1

n2

√
(n1 sin θI)2 − n2

2 (12.1)

So with this parametrization, the solution in the transmitted region is now:

ET = Re
{
ẼT e

i(kT cos θT z+kT sin θT x−ωt)
}

(12.2)

= Re
{
ẼT e

−κzei(kT sin θT−ωt)
}

(12.3)
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We define κ as:
κ =

kT
n2

√
(n1 sin θI)− n2

2 =
ω

c

√
(n1 sin θI)2 − n2

2

the key thing to note is that in equation 12.3, the transmitted wave is not zero, but is a wave which decays every quickly with a
factor of e−κt. Because of this quick decay, it’s sometimes called the evanescent wave. This wave transfers no energy, which can
be seen through the computation of R. Because cos θT is purely imaginary by equation 12.1, then α is also imaginary, and hence we
can write α = ia with a ∈ R. Using the formula for R derived at the end of last lecture,

R =

∣∣∣∣α− β

α+ β

∣∣∣∣2 =

∣∣∣∣−β + ia

β + ia

∣∣∣∣2 =

∣∣∣∣α2 + β2

α2 + β2

∣∣∣∣ = 1

Because R = 1, we conclude that there is no energy transmitted. So then if there is no energy transfer, how is the evanescent wave
allowed to exist? The answer turns out to be that on average, there is no net energy transfer in the z direction, which matches this
result.

12.0.1 Frustrated TIR

The evanescent wave actually allows for a phenomenon called the frustrated total internal reflection. This occurs when you have
two prisms separated by a very small gap, and you shine a ray through:

If the gap between the two prisms is small enough (i.e. smaller than κ−1), then the evanescent wave doesn’t fully die off, and we
will thus get a nonzero propagating wave in the second prism. This is the same phenomenon as tunneling in QM, except this is
purely classical!

12.1 Wave Propagating through a Conductor

Throughout our discussion of waves, we’ve considered media where there are no free charges and currents, so ρf and Jf = 0. This
is not true in conductors, where we cannot control the current that is generated by electromagnetic fields. To begin this discussion,
again recall Maxwell’s equations:

∇ ·D = ρf

∇ ·B = 0

∇×E = −∂TB

∇×H = Jf + ∂tD

If we then allow for the assumption that we are still in a linear medium, then this implies the equations:

∇ ·E =
ρf
ϵ

∇ ·B = 0

∇×E = −∂tB

∇×B = µJf + µϵ∂tE

If we are in an ohmic material, then we can use Ohm’s law, J = σE, so then the continuity equation for ρf gives:

∂ρf
∂t

= −∇ · Jf = −∇ · (σE) = −σ

ϵ
ρf
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This differential admits real solutions, specifically of the form:

ρf (r, t) = ρ(r, 0)e−σ/ϵt

So this means that the free charges will eventually die out given long enough time. For our purposes, we will work under this
assumption. In particular, we will assume that the period of the EM waves in our systems are much longer than the characteristic,
essentially giving the free charges enough time to die out. This translates to the conditions T ≫ ϵ

σ or ω ≪ σ
ϵ .

13 February 21

13.1 EMWaves in a Conductor

Last time we started our discussion of EM waves in a conductor, we will continue that discussion today. Recall that we said we
wanted ρf = 0, so Maxwell’s equations read:

∇ ·E = 0

∇ ·B = 0

∇×E = −∂tB

∇×B = µJf + µϵ∂tE

If we further assume that our conductor is Ohmic, then Jf = σE, so taking the curl of Faraday’s law:

∇× (∇×E) = −∂t(∇×B)

∇(∇ ·E)−∇2E = −µ∂tJf + µϵ∂2
tE

So rewriting this a bit, you get the following wave equation for E:

(∇2 − µϵ∂2
t − µσ∂t)E = 0 (13.1)

Similarly, if you take the curl of the Ampere-Maxwell law, you get a similar equation for B:

(∇2 − µϵ∂2
t − µσ∂t)B = 0

Now, take a look at 13.1. We know that we’re dealing with waves, so let’s have an ansatz of E = E0e
i(kz−ωt). Then, the differential

equation will read:
µϵË = −k2E− µσĖ

This is the same differential equation as that for a damped harmonic oscillator, where the Ė term supplies the damping. To solve for
E, we will consider a complex ansatz, so E = E0e

i(k̃z−ωt), so k̃ ∈ C. Plugging this into the equation of motion and solving for k̃,
we get:

k̃2 = µϵω2
(
1 + i

σ

ϵω

)
=
(ω
v

)2 (
1 + i

σ

ϵω

)
Now, let k̃ = ω

v (a+ ib). We’ll find a and b by matching coefficients. So, we have:

k̃2 = (a+ ib)2 = a2 − b2 + 2iab

Comparing the real and imaginary part we get a2 − b2 = 1 and 2ab = σ
ϵω , so solving for a and b:

a2 − σ2

4a2ϵ2ω2
= 1

a4 − a2 − σ2

4ϵ2ω2
= 0

We can solve this with the quadratic equation:

a2 =
1±

√
1 +

(
σ
ϵω

)2
2
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We choose the positive solution for a because a ∈ R and a > 0. Plugging this back into b, we get the combined solutions:

a =

√√√√√1 +
(

σ
ϵω

)2
+ 1

2
b =

√√√√√1 +
(

σ
ϵω

)2 − 1

2

So, if we define k̃ ≡ k + iκ, so k = ω
v a and κ = ω

v b, then we see that the electric field E has solutions of the form:

E = Re
{
Ẽ0e

−κzei(kz−ωt)
}

The e−κz term represents the fact that the waves decays as it propagates through the conductor, eventually dying out.

13.2 Magnetic Phase Shift

In a conductor, the magnetic field propagates in the same direction as E, but now with a phase shift, unlike in a vacuum. To see this,
consider a magnetic field wave:

B̃ = B̃0e
i(k̃·r−ωt)

Here, we let k̃ = k̃ · k̂. Note that this is different than the Cartesian parametrization k̃ = k + iκ, which leads to differing
mathematical results. The former is a more natural parametrization, because when we think of travelling waves the k̂ vector points
in the direction of travel, with frequency information encoded in the scalar k̃. Applying Faraday’s law:

ϵijk∂j

(
E0ke

i(k̃·r−ωt)
)
= −∂t

(
Bi

0e
i(k̃·r−ωt)

)
ϵijk(ik̃j)Ẽ0ke

i(k̃·r−ωt) = (iω)B̃i
0e

i(k̃·r−ωt)

∴ B̃i
0 = ϵijk

k̃j
ω
Ẽ0k

From this, we can see that the amplitude of B0 is given by B̃0 = (k̃/ω)Ẽ0. Because k̃ is complex from the previous section, then
this means we can write k̃ = Keiϕ,5 meaning we have:

B0e
iδB =

Keiϕ

ω
E0e

iδk

Equating the two phases, we get the equation δB = δk + ϕ, implying that theB field now has a phase which causes it to lag behind
the E wave.

14 February 24

14.1 Normal Incidence on a Conductor

Last time, we stopped by considering EM waves in a conductor, now we will consider reflection and transmission on a conductor,
in the same way we did this for linear dielectrics. Consider the following case of an electromagnetic wave EI on the boundary
between a linear dielectric and a linear conductor.

z

x

EI

linear dielectric linear conductor

5Note that this is still fundamentally different than letting k̃ = k+ iκ, because here the K is a scalar, whereas in the alternative case we would need a vector.
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By fitting boundary conditions, we can find that the transmitted wave has the same polarization as the incident wave, and we also
have the following quantities:

β̃ =

(
µ1v1
µ2ω

)
k̃2 Ẽ0R =

(
1− β̃

1 + β̃

)
Ẽ0I E0T =

(
2

1 + β̃

)
Ẽ0I

Recall also our value for k̃:

k = a+ ib =
ω

v


√√√√√1 +

(
σ
ϵω

)2
+ 1

2
+ i

√√√√√1 +
(

σ
ϵω

)2 − 1

2


Yes it’s ugly, but that’s what it is. Note also that for a very good conductor (that is, for σ → ∞), then |β̃| → ∞ as well. In this case,
we see that the ratio

lim
β̃→∞

1− β̃

1 + β̃
= −1

and this means that we get Ẽ0R = −Ẽ0I , which amounts to picking up a π phase shift on reflection. Likewise, we find that
Ẽ0T → 0.

14.2 Anomalous Dispersion

Previously, we’ve considered a model where we have an incident electric field E, which under a roughly quadratic potential,
oscillates sinusoidally. The equation of motion for such a particle is:

ẍ = −mω2
0x+

qE0

m
cos(ωt)

Given this type of motion, our goal in this section is to show that the index of refraction is given by:

n = 1 +
q2N

2ϵ0m

1

ω2
0 − ω2

Here N represents the number of charges per volume. This function n(ω) explains exactly why materials like glass bend blue
light more than red light, and is the phenomenon we call anomalous dispersion. This phenomenon actually has a fairly simple
explanation, and it has to do with absorption and damping. By assumption, let’s add a damping term to our equation of motion:

mẍ = −mω2
0x−mγẋ+ qE0 cos(ωt)

And here we will solve this by considering x(t) = Re(x̃(t)). We will let our ansatz be x̃(t) = x̃0e
−iωt, which yields the equation:

(−mω2 + imγω +mω2
0)x̃0 = qE0

This leads to the equation:

x̃0 =
qE0

m(ω2
0 − ω2)− imγω

so we’ve solved for the equation of motion. Now, as the charge oscillates, we get a dipole moment:

p = qx̃(t) =
q2

m

1

(ω2
0 − ω2)− iγω

E0e
−iωt

and the total polarization can be written as :

P̃ = p̃N =
q2N

m

1

(ω2
00− ω2)− iγω

E0e
−iωt

For a linear dielectric, we have P̃ = ϵχ̃eE, so using the above equation, we can deduce the electric susceptibility:

χ̃e =
q2N

ϵ0m

1

(ω2
0 − ω2)− iγω
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Then, the permittivity is:

ϵ̃ = ϵ0

(
1 +

q2N

ϵ0m

1

(ω2
0 − ω2)− iγω

)
Now with ϵ̃ solved, recall the wave equation we have when µ ≈ µ0 and ϵ ≈ ϵ0:

(∇2 − µϵ̃∂2
t )E = 0

Now, with the ansatz Ẽ = Ẽ0e
−i(k̃z−ωt), we get the equation −k̃2 + µϵ̃ω2 = 0 so this implies the solution:

k̃ =
√
µ0ϵ̃ω =

√
µ0ϵ0(1 + χe)

1/2ω

Usually, χ̃e ≪ 1, so we Taylor expand here using (1 + x)n ≈ 1 + nx. Therefore, k̃ becomes:

k̃ =
√
µ0ϵ0

(
1 +

q2N

2ϵ0m

1

(ω2
0 − ω2)− iγω

)
ω =

√
µ0ϵ0

(
1 +

q2N

2ϵ0m

(ω2
0 − ω2) + iγω

ω2
0 − ω2 + γ2ω2

)
This last step then allows you to think of k̃ = k + iκ, as you can split this into a real and imaginary part:

k̃ =
√
µ0ϵ0ω

[(
1 +

q2N

2ϵ0m

ω2
0 − ω2

(ω2
0 − ω2) + γ2ω2

)
+ i

(
q2N

2ϵ0m

γω

(ω2
0 − ω2) + γ2ω2

)]
So this gives the equation: Ẽ = Ẽ0e

−κze−i(kz−ωt). Then, the refractive index n = c
v = c

ωk, so substituting k:

n = 1 +
q2N

2mϵ0

ω2
0 − ω2

(ω2
0 + ω2) + γ2ω2
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With anomalous dispersion out the way, we now turn to the last topic of this section, wave guides.

15.1 Wave Guides

First, consider the setup of an electromagnetic wave propagating through a conducting pipe (see figure below). The idea of this
setup is that waves are confined in the xy-plane, but propagation is allowed in the ẑ direction. With this setup, we naturally think
of waves:

E(x, y, z, t) = Ẽ0(x, y)e
i(kz−ωt)

B(x, y, z, t) = B̃0e
i(kz−ωt)

The interior of the wave guide is vacuum, so Maxwell’s equations in a vacuum (ρ = 0,J = 0) hold. Now for the boundary conditions.
The first boundary condition is given by the properties of a conductor. We know that E = 0 inside a conductor, so by Faraday’s law
we have ∂tB = 0 inside, so B is constant. For convenience, we will just choose the B = 0 inside the conductor, since a constant B
field can always just be removed with no issues.6 So now, we have the same boundary conditions as we had for a conductor:

ϵ1E
⊥
1 − ϵ2E

⊥
2 = σf

E
∥
1 = E

∥
2

B⊥
1 = B⊥

2

1

µ1
B

∥
1 − 1

µ2
B

∥
2 = Kf × n̂

Because of our boundary conditions of E = 0 andB = 0 inside the conductor, it also makes sense for continuity’s sake that E∥ = 0

and B⊥ = 0 inside the waveguide. These are actually the only two conditions we care about. The surface currentsKf and free
6Technically, this follows from the fact that Maxwell’s equations are linear, so derivatives of constants vanish.
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charges σf will arrange themselves in a way such that these boundary conditions are true. We can then start with the ansatz of a
travelling wave:

E = Ẽ0(x, y)e
i(kz−ωt) B = B̃0(x, y)e

i(kz−ωt)

Now, with the ansatz in place, we invoke Faraday’s law, using the y direction as an example: (∇×E)y = −∂tBy , this gives the
equations:

ikẼx − k∂Ẽz = ikωB̃y

Similarly, Ampere-maxwell also gives us an equation relating the electric and magnetic fields, this time we compute (∇×B)x =
1
c2 ∂tEx:

ω∂yB̃z − ikωB̃y = −i
ω2

c2
Ẽx

Combining the two equations, we get:

ω∂yB̃z − (ik2Ẽx − ∂xkẼz) = −i
ω2

c2
Ẽx =⇒ Ẽx =

i(
ω
c

)2 − k2
(k∂xẼz − ω∂yB̃z)

In a similar fashion, we can also extract the other components:

Ẽy =
i(

ω
c

)2 − k2
(k∂yẼz − ω∂xB̃z)

B̃x =
i(

ω
c

)2 − k2
(k∂xBz −

ω

c2
∂yẼz)

B̃y =
i(

ω
c

)2 − k2
(k∂yB̃z +

ω

c2
∂yẼz)

The point of these equations is to show that in a wave guide, as long as Ẽz and B̃z are determined, then the whole field is determined.
Further, if you apply Gauss’s law to∇ ·E = 0, then you get ∂xẼx + ∂yẼy + ikẼz = 0. Putting these equations together, we get
the wave equation: [

∂2
x + ∂2

y +
(ω
c

)2
− k2

]
Ẽz = 0

You can do the same thing for B using∇ ·B = 0:[
∂2
x + ∂2

y +
(ω
c

)2
− k2

]
B̃z = 0

15.2 Wave Modes

Since Ez and B̃z essentially determine the entire wave, we can classify waves into three types:

1. TE mode: Transverse E wave, so Ẽz = 0

2. TM mode: Transverse B wave, so B̃z = 0

3. TEM mode: Ẽz = 0 and B̃z = 0.

A comment about the TEM mode though: in a single wave guide like this, a TEM mode cannot exist. This is because if Ẽz = 0, then
∇ ·E = 0 so E is divergenceless, but by (∇×E)z = −∂tBz = 0 we have that E must also be curl-less. Combined with the fact
that E = −∇V , then this implies that the only valid solution to these equations is V = 0, or basically there is no wave inside the
wave guide.
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16.1 Rectangular Wave Guide

Now we will consider the special case where the cross section of our wave guide happens to be a perfect rectangle. We will consider
TE modes, so Ez = 0. So our objective is to solve for Bz , using the wave equation. The differential equation we want to solve is(

∂2
x + ∂2

y +
(ω
c

)2
− k2

)
Bz = 0

This equation is actually solved in a very similar way to the infinite square well in quantum mechanics. We will assume separable
solutions of the form Bz(x, y) = X(x)Y (y). Then, the wave equation becomes:

Y ∂2
xX +X∂2

yY +
(ω
c

)2
XY − k2XY = 0

Dividing both sides by XY , we get:
1

X
∂2
xX +

1

Y
∂2
yY +

(
ω2

c2
− k2

)
= 0

Notice here that the first term only has x dependence, and the second term only has y dependence. Therefore, for this to equal zero
at all times, then we require that both these values must be constants. Therefore, we will call:

1

X
∂2
xX = −k2x

1

Y
∂2
yY = −k2y

We choose kx and ky such that k2X + k2y + k2 =
(
ω
c

)2. The two separate differential equations now admit solutions of the form:

X(x) = A sin(kxx) +B cos(kxx)

Y (y) = A sin(kyy) +B cos(kyy)

Now, we impose the boundary conditions: Ẽ∥ = 0 and B̃⊥ = 0. Since

Bx =
i(

ω
c

)2 − k2

[
k∂xBz −

ω

c2
∂yEz

]
andEz = 0 because of TE waves, then we have ∂xBz

∣∣
x=0,a

= 0 as a result. The boundary conditions come down to ∂xX
∣∣
x=0,a

= 0,
which gives the condition:

kxa = mπ =⇒ kx =
mπ

a

Similarly, we can get ky = nπ
b .

16.2 Cutoff Frequency

With the differential equation solved, the equation for B is now:

B̃(x, y) = B0 cos
(mπx

a

)
cos
(nπy

b

)
We also have the constraint k2x + k2y + k2 =

(
ω
c

)2, so this means:

k =

√(ω
c

)2
−
(mπ

a

)2
−
(nπ

b

)2
This equation has an interesting consequence: if

(
ω
c

)2
<
(
mπ
a

)2
+
(
nπ
b

)2, then k becomes imaginary, and this eventually means
that the wave now decays over time, and you won’t get a propagating wave. So this means that there is a minimum frequency
below which you can’t get a propagating wave, which is given by the cutoff frequency

ωmn = cπ

√(m
a

)2
+
(n
b

)2
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16.3 Phase Velocity

In a wave guide, it is possible for the phase velocity to exceed the group velocity. Consider a wave with angular velocity
k = 1

c

√
ω2 − ω2

mn. Then, the phase speed in the z direction is given by:

vphase =
ω

k
= c · ω√

ω2 − ω2
mn

> c

How is this allowed behavior? The reason is because it is impossible to encode information in the phase of a wave, and instead we
encode it in the frequency, which travels at the group velocity:

vgroup =
dω

dk
=

(
dk

dω

)−1

= c ·
√
ω2 − ω2

mn

ω
< c

which is less than c, so there is no violation of causality here. There is also a nice physical picture for this result: consider a wave
propagating through the wave guide, and here we will explicitly draw out the wavefront:

λz

k′
θ

λ

The actual wavelength λ is calculated as the perpendicular distance between two wavefronts, so using this definition we see that
there’s a pretty simple equation for λz :

λz =
λ

cos θ

And because we need to form standing waves, we have |k′| cos θ = λ
k , so:

cos θ =
k

|k′|
=

√
1−

(ωmn

ω

)2
Now, the group velocity is given by how fast it travels in the z direction, so vg = c cos θ, therefore we have:

vg = c

√
1−

(ωmn

ω

)2
and we get the same result that the group velocity is less than c.

17 March 3

17.1 Coaxial Wave Guide

Previously in our discussion of wave guides, we established that we can’t have TEM modes, because the condition of Ez = 0 and
Bz = 0 meant no wave at all, since∇2V = 0 implies that the potential is constant everywhere. Here, we will consider a case where
TEM modes can exist. Consider a situation where we have an inner and outer conductor:

a
b
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To find a solution, we still use Faraday’s law and Ampere-Maxwell, with the same ansatz as before: Ẽ = Ẽ0(x, y)e
i(kz−ωt), and let

E0z = B0z = 0, since we are considering TEM waves. We then get the following system of equations:

∂xEy − ∂yEz = iωBz ∂xBy − ∂yBx = − iω

c2
Ez (17.1)

∂yEz − ikEy = iωBx ∂yBz − ∂zBy = − iω

c2
Ex (17.2)

ikEx − ∂xEz = iωBy ikBx − ∂xBz = − iω

c2
Ey (17.3)

If we now consider Ez = Bz = 0, then the equations become:

∂xEy − ∂yEz = 0 ∂xBy − ∂yBx = 0 (17.4)

∂yEz − ikEy = iωBx ∂yBz − ∂zBy = − iω

c2
Ex (17.5)

ikEx − ∂xEz = iωBy ikBx − ∂xBz = − iω

c2
Ey (17.6)

Equations 17.5 and 17.6 look like separate equations, but they are all just saying b = 1
c ẑ×E. Combining equation 17.4 with Gauss’

law, we get:

∂xEy − ∂yEx = 0 ∂xBy − ∂yBx = 0

∂xEx + ∂yEy = 0 ∂xBx + ∂yBy = 0

There is no time dependence, so this is just a 2D electrostatics/magnetostatics problem. The E and B field then become:

E0 =
A

s
ŝ B0 =

A

cs
ϕ̂

these are determined through Gauss’s law and Ampere’s law. Using the picture we have from above, we can then deduce the E and
B fields look like:

B

E

17.2 Chapter 10: Potential Formulation of EM

Recall that in 110A, we introduced eletrostatic and magnetostatic potentials, and introduced E = −∇V and B = ∇ ×A. We
introduced this with the motivation that it can simplify some problems: in the case of E, using V is nicer because it’s a scalar
equation, but the same argument can’t be said for A. So why did we introduce A, if it is also a vector quantity? It turns out that A
is actually measurable effect in quantum mechanics, through the Aharonov-Bohm effect.

The setup is as follows: you have an electron gun, and a double slit system. We then place a solenoid that generates a B field which
runs perpendicular to the direction of propagation:

e−
B

In this situation, all paths that an electron can take from the source to the screen has a net B contribution of zero, but a nonzero
contribution from A. We find that changing the B field has a measurable, and hence A is actually a measurable quantity!
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17.3 The case for potentials

Recall that previously, when we derived the wave equation for E and B, we got the equations:

(∇2 − 1

c2
∂2
t )E = 0 (∇2 − 1

c2
∂2
t )B = 0

And it’s from these equations that we get c = 1√
µ0ϵ0

to be finite. This, as we know, means that electromagnetic waves propagate
at the speed of light, but more importantly that it takes time for them to propagate. If we now include source terms ρ and J, the
equation becomes:

(∇2 − 1

c2
∂2
t )E =

1

ϵ0
∇ρ+ µ0∂tJ

(∇2 − 1

c2
∂2
t )B = −µ0(∇× J)

The source terms make this wave equation very complex, since it depends on derivatives of ρ and J. Its dependence on these terms
also means that the solution to the E field at a time t is not simply by integrating the charge density at an earlier time – there are
velocity and acceleration contributions that we need to consider. To fully solve the equations for E and B, we use a potential-based
approach.

17.4 E and B using Potentials

From Maxwell’s equations, we know that ∇ · B = 0, so we know that B must be divergence-less. This is consistent with our
current formulation that we can expressB as the curl of the magnetic potential,B = ∇×A, since∇ · (∇×A) = 0 for any vector
potentialA. On the other hand, we know that ∇×E = −∂tB, so E is no longer curl-less, and hence E = −∇V is no longer a
sufficient equation. How should we modify our equation for E then? The solution is to "redefine" V , since we can rewrite Faraday’s
law using A:

∇×E = −∂t(∇×A) =⇒ ∇× (E+ ∂tA) = 0

so the quantity E+ ∂tA instead of just ∇×E that is curl-less. By Helmholtz’s theorem, we can then write this quantity as the
gradient of some scalar function V , and hence we have:

E+ ∂tA = ∇V =⇒ E = −∇V − ∂tA

Notice that the V is the same as the electrostatic potential we introduced earlier, but now the E field is not determined exclusively
based on V but also in terms of this ∂tA term.

So now, we can use this new E to find the new form of Gauss’s law fully in terms of potentials:

∇ · (−∇V − ∂tA) =
ρ

ϵ0
=⇒ ∇2V −∇ · (∂tA) =

ρ

ϵ0

The Ampere-Maxwell also looks different:

∇× (∇×A) = µ0J+ µ0ϵ0∂t(−∇V − ∂tA)

∇(∇ ·A)−∇2A = µ0J− µ0ϵ0∂t(∇V )− µ0ϵ0∂
2
tA

(∇2A− µ0ϵ0∂
2
tA)−∇ (∇ ·A+ µ0ϵ0∂tV ) = −µ0J

And those are Maxwell’s equations written purely in terms of potentials! Rewriting them slightly so that the equations look prettier:

∇2V + ∂t(∇ ·A) = − ρ

ϵ0
(17.7)(

∇2 − 1

c2
∂t

)
A−∇

(
∇ ·A+

1

c2
∂tV

)
= −µ0J (17.8)

These two equations will be the focus for the upcoming lectures, as we find a way to solve them.
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18 March 5

Last time we left off, we derived the equations of motion for electric and magnetic potential V and A. Before we actually go ahead
and solve these equations of motion, we will first talk about gauge transformations.

18.1 Gauge Transformations

To begin our discussion, let’s first start by looking at the number of degrees of freedom our equations give us. Because E and B are
vector quantities, it would seem that we have 6 degrees of freedom, but in reality we know from studying waves that they only have
two dynamical degrees of freedom: in the case of plane waves, we know that E · k = 0 which knocks one degree out, and once E is
determined then so is B via B = 1

c k̂×E, so this gives only two degrees of freedom.

Now, if you swap E and B out for V and A, it seems that you’ve introduced two extra degrees of freedom: V supplies 1 and A

supplies the other three. What can we do with the extra two degrees, if they cannot manifest themselves in the underlying E and
B? The answer is that it gives us some freedom in how we choose to define V andA.

To illustrate this point, recall that we’ve defined B = ∇×A. Because we know that the curl of a gradient is zero, it means that
applying the transformation A → A′ +∇λ doesn’t affect the underlying B field, since A′ = ∇×A+∇× (∇λ) = ∇×A. The
term λ here is called a gauge, and the fact that B doesn’t change means that B is invariant under this gauge.

Now let’s say that we do introduce ∇λ to A. Then, in order to preserve the relation E = −∇V − ∂tA, how should V → V ′

transform? To figure this out, we look at what happens when we substituteA′:

E = −∇V ′ − ∂tA
′ = −∇V ′ − ∂t(A+∇λ) = −∇V − ∂tA

It’s clear then that in order for the equation to hold, then we require V ′ = V − ∂tλ, so that the ∂t∇λ terms cancel each other out.
So, the full gauge transformation is:

V → V ′ = V − ∂tλ

A → A′ = A+∇λ

Now, any scalar function λ here will work. So, we will choose a particular λ that allows V and A to satisfy some additional
conditions, which we can do because λ does not matter. This is the process of gauge fixing: we leverage the gauge invariance to
choose a λ that is particularly convenient for us.

18.2 Coulomb Gauge

The first gauge transformation we will look at is the Coulomb gauge. Under this gauge, we choose λ such that ∇ ·A = 0, or in
other words we choose the λ such that ∇2λ = −∇ ·A. The equations of motion then become:

∇2V = − ρ

ϵ0

(∇2 − 1

c2
∂2
tA)−∇

(
1

c2
∂tV

)
= −µ0J

This gauge isn’t particularly useful because the equation for A is still not very nice. But, it serves as a good example to show how
we actually go through the process of gauge fixing. Suppose we have an initial potentialA′ that has ∇ ·A′ ̸= 0 (for the moment
I will use the prime to denote the original and the non-primed to denote the new one after introducing the gauge). Then, if we
introduce a gauge λ such that ∇2λ = −(∇ ·A′), the transformed potential satisfies:

∇ · (A′ +∇λ) = ∇ ·A′ +∇2λ = 0

This then implies, as we’ve said before, that ∇2V = − ρ
ϵ0
. In the case where ρ ̸= 0, this λ is all we can do to fix the gauge – we’ve

run out of "extra" degrees of freedom to introduce further gauges λ′. However, in the case where ρ = 0, this is not the case. We can
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in fact perform another gauge transformation by introducing λ′ such that ∇2λ′ = 0, which doesn’t affect our original gauge fixing
because:

∇ · (A+∇λ′) = ∇ ·A+∇2λ′ = 0

so we are allowed in choosing another λ′. Under this so-called residual gauge transformation, we know that in terms of V this
manifests itself as an additional −∂tλ

′ term, so if we set ∂tλ′ = V , then this gives us a final V such that V = 0.7 So now, with λ′

we get the equations:
V = 0 ∇ ·A = 0

and we’ve therefore reduced the original 4 degrees into two degrees of freedom, those two supplied by ∇ · A = 0. Explicitly,
∇ ·A = 0 is written as:

∂xAx + ∂yAy + ∂zAz = 0

We have freedom in choosing two of the three values here: suppose ∂xAx = kx and ∂yAy = ky , then we are forced to choose
∂zAz = −kx − ky .

19 March 7

There was an error in the lecture recording, so the notes for this lecture were pieced together using the provided note and lecture
audio.

Last time, we talked about the Coulomb gauge, which gave us the equations of motion:

∇2V = − ρ

ϵ0(
∇2 − 1

c2
∂2
t

)
A = −µ0J+∇

(
1

c2
∂tV

)

As we’ve said before, the Coulomb gauge is not very useful in electrodynamics, since the time derivative terms are quite a nightmare
to deal with. What is worth commenting on is the equation for the static potential: the fact that the equation doesn’t change even
when we introduce time dependence means that the electrostatic potential can actually be measured acausally:

V (t, r) =
1

4πϵ0

∫
ρ(t′, r′)

r
dτ ′

While this may be disturbing at first, it is important to note that V by itself is not measurable, and it is instead the electric field E

that we measure. To that end, the electric field takes on the form E = −∇V − ∂tA, which is not instantaneous so there is no real
causality breaking here.

19.1 The Lorentz Gauge

Aside from the Coulomb gauge, we also work with the Lorentz gauge, which sets:

∇ ·A+
1

c2
∂tV = 0 (19.1)

To see how this is enforced, suppose we perform the transformation (V,A) → (A′ − ∂tλ,A
′ +∇λ). Then, in order for the above

equation to hold:

∇(A′ +∇λ) +
1

c2
∂t(V

′ − ∂tλ) = ∇ ·A′ +∇2λ+
1

c2
∂tV

′ − 1

c2
∂2
t λ

so, enforcing λ to satisfy: (
∇2 − 1

c2
∂2
t

)
λ = −

(
∇ ·A′ +

1

c2
∂2
t V

′
)

7Note that this V is not the original V – it’s been transformed twice, so in terms of the original V the equation is actually V → V − ∂tλ− ∂tλ′, where we set
∂tλ′ = V − ∂tλ to get a net zero potential.
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ensures that we get the desired condition. With this condition, the equation of motion now reads:

∇2V − 1

c2
∂2
t V = − ρ

ϵ0
(19.2)

∇2A− 1

c2
∂2
tA = −µ0J (19.3)

This is obtained by putting gauge fixing condition into equations 17.7 and 17.8. These are the wave equations for the potentials V
andA. However, this one gauge fixing condition doesn’t completely fix the gauge. You can actually add another gauge λ′ while still
keeping equation 19.1 intact, as seen below:

∇ · (A+∇λ) +
1

c2
∂t(V − ∂tλ

′) =

(
∇ ·A+

1

c2
∂tV

)
+

(
∇2λ′ − 1

c2
∂2
t λ

′
)

= 0

so as long as we choose λ′ such that the second term is zero, we are allowed to add this extra gauge. The implications of this are as
follows: because we modify V by adding a time derivative to ∂tλ′ and we modify A by adding a gradient ∇λ term, it is possible to
find a λ′ that makes both V − ∂tλ

′ and A+∇λ′ zero. So, this means that we can always take some nonzero (V,A) and use this
extra gauge symmetry to transform both fields into the zero field (0,0). This reduces another degree of freedom, and hence we are
left with two, consistent with EM waves.

19.2 Retarded Potentials and Fields

The benefit of the Lorentz gauge is that it transforms the equations of motion for V andA into four copies of the same equation,
named the Klein-Gordon equation: (

∇2 − 1

c2
∂2

∂t2

)
ϕ(t, r) = ρ(t, r)

Here, ϕ(t, r) represents the potential and ρ(t, r) is a general source term. To solve this equation, we can use Green’s functions,
which first involve solving the equation using a delta function as the source:(

∇2 − 1

c2
∂2

∂t2

)
G(t, r) = δ(4)(t, r)

Then, once the solution to G(t, r) is found, we can find the general solution for ϕ by simply integrating:

ϕ(t, r) =

∫
d4x′ ρ(t′, r′)G(t− t′, r− r′) (19.4)

You can also check explicitly that this satisfies the Klein-Gordon equation, we’ll leave that as an exercise. The intuitive idea for why
this works is that we first solve the equation for a point potential with the delta function δ(4)(t, r), which gives the contribution
to the potential ϕ by a single point source at (t, r). Then, we integrate over all the point sources with the integral, which come
together to give us the full equation for the potential of all sources in the system, and that solves for the field.

19.3 Solving the Green’s Function Equation

One way we can solve for Green’s function is to solve it in momentum space, by considering the solution to the Fourier transform
of the equation. To this end, we can write Green’s function as a sum of momentum modes Gk:

G(t, r) =

∫
d4k Gke

ik·x

and here we use the four-vector k = (k0,k) with k · x = −k0t+ k · r (we use the (−,+,+,+) convention here). In momentum
space, let’s derive the equation for Green’s function:(

∇2 − ∂2
t

) 1

(2π)4

∫
d4k Gke

ik·x =
1

(2π)4

∫
d4k eik·x

(
∇2 − ∂2

t

) ∫
d4k Gke

ik·x =

∫
d4k eik·x(

∇2 − ∂2
t

)
Gke

ik·x = eik·x
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Now let’s expand the k · x on the left hand side:

Gk

(
∇2 − ∂2

t

)
ei(−k0t+k·r = eik·x

Then, computing the derivatives, we have:

Gk

(
(k0)2 − k · k

)
eik·x = eik·x(

(k0)2 − k · k
)
Gk = 1

∴ Gk =
1

((k0)2 − k · k)

With this, we can now write the full integral for G(t, r):

G(t, r) =
1

(2π)4

∫
d4k

eik·x

((k0)2 − k · k)
(19.5)

There are some problems with this integral though: firstly, it’s not well-defined, especially when |k0| = ±
√
k · k, which will cause

the integral to blow up. Therefore, treating this integral classically is not the right idea, and we will instead have to borrow some
tools from complex analysis.

20 March 10

Recall that in the last lecture, we derived the following form for the Green’s function equation in momentum space:

G(t, r) =

∫
d4k

(2π)4
eik·x

(k0)2 − |k|2

The denominator is troubling, because it implies that the integrand blows up to infinity when k0 = ±|k|, so we need to evaluate
this integral using complex analysis. We will introduce all the tools necessary for complex analysis necessary in class, so there’s no
need to look for outside sources. However, for a full treatment of complex analysis (highly recommended!) you should go take a
full course on it – there’s just no way to do it justice in 3 lectures of time. With that said, let’s try our best to illustrate the main
components we’ll need from complex analysis.

20.1 Complex Analysis

To start, let’s consider the basic complex plane:

x = Re(z)

y = Im(z)

z = x+ iy

A complex number can always be decomposed into its real and imaginary component, in the form z = x + iy. This can be
represented in the complex plane as a point (x, y), so in this sense you can think of the complex plane as an analogue of R2, but
there are key differences, as we shall see in the coming lectures. We can also define the complex conjugate of z as z∗ = x− iy,
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where we basically flip the imaginary component. Now, motivated by this real-imaginary decomposition, we can define a complex
function f : C → C as a map that takes one complex number (x, y) and transforms it into another complex number, written as:

f(x, y) = u(x, y) + iv(x, y)

So just like we can separate complex numbers, we can separate functions too. Now, if we are to consider the derivative of f(z):

df

dz

∣∣∣∣
z0

This is not always uniquely defined in the complex plane. The reason is because in principle there are many different ways that you
can approach z0 in the complex plane – from the left, right, above, etc.. So, in order for the derivative to exist, what needs to be
shown is that in all the ways we can approach z0, the quantity:

lim
∆z→0

f(z0 +∆z)− f(z0)

∆z

exists and is the same, only then can we conclude that f(z) is differentiable at z0. Because this is true for any dz chosen, one
necessary condition for differentiability is then that the derivative is the same when dz = dx and dz = idy. If these are equal, this
means:

∂f

∂x
=

1

i

∂f

∂y

∂u

∂x
+ i

∂v

∂x
=

1

i

(
∂u

∂y
+ i

∂v

∂y

)
= −i

∂u

∂y
+

∂v

∂y

Comparing the real and imaginary parts, we get the system of equations:

∂u

∂x
=

∂v

∂y

∂v

∂x
= −∂u

∂y

These are canonically called the Cauchy-Riemann Conditions. Note also that we can express this in terms of ∂z∗f . Recall that
z = x+ iy and z∗ = x− iy, so therefore:

∂

∂z
=

∂x

∂z

∂

∂x
+

∂y

∂z

∂

∂y
=

1

2

∂

∂x
+

1

2i

∂

∂y
=

1

2
(∂x − i∂y)

∂

∂z∗
=

∂x

∂z∗
∂

∂x
+

∂y

∂z∗
∂

∂y
=

1

2

∂

∂x
− 1

2i

∂

∂y
=

1

2
(∂x + i∂y)

Therefore, applying ∂∗
zf :

∂z∗f =
1

2
(∂x + i∂y) f =

1

2
(∂xu− ∂yv) +

i

2
(∂xv + ∂yu)

The terms in both parentheses are the Cauchy-Riemann conditions, so the Cauchy-Riemann conditions are equivalent to saying
that ∂z∗f = 0. It turns out that the C-R conditions, along with a constraint on continuity also provides a sufficient condition on
differentiability, which we summarize in the theorem below:

Theorem 20.1: Differentiability

A function f(z) = u(x, y) + iv(x, y) is differentiable in a region of the complex plane if and only if the Cauchy-Riemann
conditions are satisfied, and all first partial derivatives of u and v are continuous in that region.

Definition 20.2: Analyticity

A function f : C → C is analytic at a point z0 if it is differentiable at z0 and all other points in some neighborhood of z0.
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20.2 Integrals of Complex Functions

Now let’s consider integrating a function f = u+ iv along a path P :∫
P
f dz =

∫
P
(u+ iv)(dx+ i dy) =

∫
P
(u dx− v dy) + i

∫
P
(v dx+ u dy)

Written this way, it is reasonable to think of integrating f as taking the line integral over a path P of two real vector fieldsA1(u,−v)

and A2(v, u): ∫
P
f dz =

∫
P
A1 · dr+ i

∫
P
A2 · dr

Now borrowing from multivariable calculus, we know that these integrals are path independent if the vector functions A1 and A2

have zero curl. But, looking at the conditions forA1 and A2 to be curl-less:

∇×A1 = ∂xA1y − ∂yA1x = −∂xv − ∂yu

∇×A2 = ∂xA2y − ∂yA2x = ∂xu− ∂yv

These are exactly the Cauchy-Riemann conditions! So, if a function is analytic along all points in a path P , the resulting integral is
path independent. We can extend this even further, by saying that if f(z) is analytic on a closed contour C and all points inside the
region bounded by C, then: ∮

C
f(z) dz = 0

The point about f(z) needing to be analytic on all points within C is a detail that needs further elaboration. What if f(z) has a
singularity inside C? Suppose f does have a singularity at z0. Then, we can expand f as:

f =

∞∑
n=−∞

an(z − z0)
n = · · ·+ a−2

(z − z0)2
+

a−1

z − z0
+ a0 + a1(z − z0) + . . .

Now, if we consider a circular contour C centered at z0 with a radius of R:

z0

C

z = z0 +Reiθ

then we write z = z0 +Reiθ , so we re-express z − z0 = Reiθ in the definition for f . This definition also means dz = d
(
Reiθ

)
=

iReiθ dθ. So, the contour integral becomes:∮
C
f dz =

∫ 2π

0

( ∞∑
n=−∞

an(Reiθ)n

)
iReiθ dθ

=

∞∑
n=−∞

i

∫ 2π

0

Rn+1ane
i(n+1)θ dθ

=

∞∑
n=−∞

iRn+1an

∫ 2π

0

ei(n+1)θ dθ

Now, the integral over θ is only nonzero when n = −1, where we have
∫ 2π

0
dθ = 2π. Therefore, the integral becomes:∮

C
f dz = 2πia−1

This quantity is sometimes called the residue of f at the point z0, which is sometimes denoted as Res[f(z0)]. As an aside note, in
the case where am = 0 for allm ≤ −2, then we can find the residue a−1 by using:

Res[f(z0)] = a−1 = lim
z→z0

(z − z0)f(z)

This is true because if all the termsm ≤ −2 are zero, then the only factor that doesn’t contain a z − z0 term is a−1, so taking the
limit immediately extracts the term.
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21 March 17

Recall that last time, we talked about analytic functions, and we said that if f = f(z) is analytic on a contour C and the region
inside C, then

∮
C f(z) dz = 0. Then, if f has a singularity within C, then∮

C
f (z) dz = 2πia−1

where a−1 is the coefficient of the inverse power (z − z0)
−1. Now, even though in the previous example we used the contour of a

circle, we can generalize this to any contour as well. Consider the following contour:

C

C2

C1 −P

P

The diagram may be hard to see, but essentially the inner circle is C1, the outer curve is C2, and we have a path P that enters
and exits. Assume that we make the gap between P and −P to be infinitesimally small, so that the entire integral approximates
the contour C as best as possible. Here, the enclosed region of C does not enclose any singularities, so we know already that∮
C f(z) dz = 0. Now, if we expand the left hand side:∮

C
f(z) dz =

∫
C1

f(z) dz +

∫
C2

f(z) dz +

∫
P
f(z) dz +

∫
−P

f(z) dz

the integrals over P and −P of course cancel, so we have:

2πiRes[f(z0)] =

∫
C2

f(z) dz

In some sense this is actually very similar to Ampere’s law. Recall that Ampere’s law states
∮
B dℓ = µ0Ienc, so if we imagine a

current going in the ẑ direction a loop enclosing it in the xy-plane:

I
C

We know from 110A that here the B field from the wire can be expressed as

B =
µ0I

2πr

(ignoring the vector comopnent for now), so if we deifne Ĩ = µ0I
2π , then we write Ampere’s law in this case as∫

B dℓ = 2πĨ
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So in this sense, we can think of the current flowing perpendicular as a kind of singularity. Of course, you could extend this argument
to having multiple currents, and likewise there’s nothing stopping us from doing the same in complex analysis, so in general:∮

C
f(z) dz =

∑
n

2πiRes[f(zn)]

Now, coming back to physics, remember that our goal is to solve for Green’s function G(t, r) for the Klein-Gordon equation
(∇2 − ∂2

t )G(t, r) = δ(4)(t, r). Moreover, we showed that:

G(t, r) =

∫
d4k

(2π)4
ei(−k0t+k·r)

(k0)2 − |k|2

Now, we can write the denominator as a difference of squares:

G(t, r) =

∫
d4k

(2π)4
ei(−k0t+k·r)

[
1

((k0 − |k|)(k0 + |k|)

]
Clearly, we have singularities at k0 = ±|k|. Using what we’ve learned from complex analysis, integrating over k0 ∈ R is the same
as integrating over k0 ∈ C, but integrating over the real line only. This means we take the integral:

−|k| |k|

Clearly we can’t do this immediately because of the singularities at ±|k|. Further, because the residue theorem requires a closed
loop, we can’t immediately apply that either because the line is not closed. So, our strategy is to basically integrate over a loop still,
but make the extra part we add contribute nothing to the overall integral. We can do that as follows: for t > 0, we can use the loop:

The idea is basically to close the loop by using a very large semicircular arc, which can be parametrized as:

e−i(Re(k0)+i Im(k0))t = e−iRe(k0)teIm(k0)t

when Im(k0) < 0 and t > 0, then the factor from this contour exponentially decays away, due to the factor of eIm(k0)t. So, we’ve
successfully create a loop where the extra contribution doesn’t matter at all. Similarly, for t < 0, we can use the other half circle
with the same purpose:

Finally, we can deal with the singularities themselves. Because we aren’t allowed to walk over them directly, our strategy will
basically be to "walk around" them:
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−|k|
|k|

so now our integral can be decomposed into three parts: the straight parts, and the two loops, all of which are well defined.
Introducing these loops also begs another question: how should we go about choosing whether we go above or below them? There
are 4 ways in total that we can go over both singularities, so how do we know the path we’ve chosen is the "correct" one? The
answer to this question depends on the physics of the system: in our case, since δ(4)(t, r) has a spike at t = 0, then we expect that
for t < 0, our integral should evaluate to zero and for t > 0 we expect a nonzero contribution. Therefore, for t < 0, we should
choose a method that doesn’t enclose the singularities at all. By that same token, we should choose the contour that encloses both
singularities in the t > 0 case.

22 March 19

Today, we will finally solve for Green’s function. Last time, we talked about how the t < 0 case integrates to zero by choosing the
path that avoids both singularities, and now we choose the path that includes both for t > 0. Recall that the integral we want to
solve is:

G(t, r) =

∫
d4k

(2π)4
eik·x

(k0)2 − |k|2

and the contour we will integrate over is:

−|k| |k|

Remember, we want to include both singularities so this is the only contour that we can choose. First, we will invoke the identity
1

a2−b2 = 1
2b

[
1

a−b −
1

a+b

]
, this will allow us to write the integrand as a Laurent series, so we can extract the a−1 term directly. So

the integral to solve is now:

1

(2π)4

∫
d3k

∫
dk0 e−ik0teik·r

1

2|k|

[
1

k0 − |k|
− 1

k0 + |k|

]
=

1

(2π)4

∫
d3k

∫
C
dk0 e−ik0teik·r

1

2|k|
1

(k0 − |k|)
− 1

(2π)4

∫
d3k

∫
C
dk0 e−ik0teik·r

1

2|k|
1

(k0 + |k|)

The residue for these two integrals can be found using the limit as k0 → ±|k|, so the integral becomes:

1

(2π)4

∫
d3k eik·r

−2πi

2|k|
e−i|k|t − 1

(2π)4

∫
d3k eik·r

1

2|k|
(−2πi)ei|k|t
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the negative signs in the (−2πi) are there because of our choice to evaluate the integral clockwise. Now the integral can be
combined together, giving:

i

(2π)3

∫
d3k

eik·r
(
ei|k|t − e−i|k|t)

2|k|

WLOG, we set k3 in the direction of r̂ (recall, this is the vector pointing from the origin to the source), therefore the integral
becomes:

i

(2π)3

∫ ∞

0

d|k||k|2
∫ π

0

ei|k|r cos θ
(
ei|k|t − e−i|k|t)
2|k|

sin θ dθ

∫ 2π

0

dϕ

evaluating the θ and ϕ integrals simultaneously:

i

(2π)2

∫ ∞

0

d|k| |k|2 1

i|k|r

(
ei|k|r − e−i|k|r) (ei|k|te−i|k|t)

2|k|
=

1

(2π)2
1

2r

∫ ∞

0

d|k|
[(

ei|k|(t+r) + e−i|k|(t+r)
)
−
(
ei|k|(t−r) + e−i|k|(t−r)

)]
Now, doing a change of variables from |k| → −|k| on the second term in both parenthesis expressions, then:∫ ∞

0

d|k| e−i|k|(t+r) =

∫ −∞

0

−d|k| ei|k|(t+r) =

∫ 0

−∞
d|k| ei|k|(t+r)

This allows us to transform the integrals in both parentheses into one integral involving one integrand each, and integrating over
all space. Therefore, we have:

1

(2π)2
1

2r

[∫ ∞

−∞
d|k| ei|k|(t+r) −

∫ ∞

−∞
d|k| ei|k|(t−r)

]
=

1

4πr
(δ(t+ r)− δ(t− r))

Since we only consider t > 0, then the δ(t+ r) term never matters since we never reach the spike at t = −r, so we can remove that
term from the expression entirely. Thus, the solution is:

G(t, r) =

− 1
4πr δ(t− r) t > 0

0 t < 0

With Green’s function solved, we can now proceed to find the potentials ϕ(t, r) using equation 19.4:

V (t, r) =

∫
d4x′

(
−ρ(t′, r′)

ϵ0
G(t− t′, r − r′)

)
=

∫
d4x′

(
−ρ(t′, r′)

ϵ0

)(
− 1

4π

δ(t− t′ − r
c )

r

)
So this gives us

V (t, r) =

∫
d3x′ 1

4πϵ0

ρ(tr, r
′)

r
(22.1)

where tr ≡ r− r
c is defined as the retarded time. This should make sense: the potential at a given point is determined by what the

source was at a prior time tr , rather than the current time, since that would violate causality. Similarly, the magnetic potential A is
now:

A(t, r) =
µ0

4π

∫
d3x′J(tr, r)

r
(22.2)

Finally, once we have A and V , the we can find E = −∇V − ∂tA and B = ∇×A.

23 March 21

So far, we’ve solved the potential (V,A) that satisfies the full equations of motion:(
∇2 − 1

c2
∂2
t

)
V = − ρ

ϵ0(
∇2 − 1

c2
∂2
t

)
A = −µ0J
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and the solved potentials take the form:

V (t, r) =
1

4πϵ0

∫
dτ ′

ρ(tr, r
′)

r

A(t, r) =
µ0

4π

∫
dτ ′

J(tr, r
′)

r

Now, we want to find a general expression for the fields E,B. One way we can do this is by directly using the equations
E = −∇V − ∂tA and B = ∇×A (which is what Griffiths does), but an alternative way to do this is to use the Green’s function
approach we developed from earlier. The reason we can use this is because if we look at the equations for E and B:(

∇2 − 1

c2
∂2
t

)
E =

1

ϵ0
(∇ρ+ µ0∂tJ)(

∇2 − 1

c2
∂2
t

)
B = −µ0(∇× J)

we can see that the left hand side is a wave-like equation, so we can just treat the right hand side as our "source terms". Using this
approach, we can wirte the E field as:

E(t, r) =

∫
d4x′

(
1

ϵ0
∇′ρ(t′, r′) + µ0∂tJ(t

′, r′)

)(
− 1

4π

δ(4)(t− t′ − r/c)
r

)
= − 1

4π

∫
d3x

(
1

ϵ0
∇′ρ(t′, r′) + µ0∂tJ(t

′, r′)

) ∣∣∣∣
t=tr

1

r

Note that we can’t just throw in the evaluation: [∇′ρ(t′, r′)]t=tr ̸= ∇′ρ(tr, r
′), because tr has r-dependence. To figure out the

exact relation, we look to the index notation:[
∇′ρ(tr, r

′) =
∂tr
∂xi

∂tρ(tr, r
′) +

∂

∂xi
ρ(tr, r

′)

]
Now, the term ∂tr

∂xi is:
∂tr
∂xi

= ∂′
i

[
t−

√
(x− x′)k(x− x′)k

c

]
=

(x− x)i
rc

=
r̂
c

So finally:

∇′ρ(tr, r
′) =

1

c
ρ̇(tr, r

′) r̂ + [∇′ρ(t′, r′)]t=tr
=⇒ ∇′ρ(t′, r′)

∣∣∣∣
t=tr

= ∇′ρ(tr, r
′)− 1

c
ρ̇(tr, r

′)r̂

Putting this back into the E field equation:

E(t, r) = − 1

4π

∫
d3x′

[
1

ϵ0
∇′ρ(t′, r′)− 1

c
ρ̇(tr, r

′) r̂ + µ0J(tr, r
′)

]
· 1

r

=
1

4π

∫
d3x′

[
1

ϵ0
∇′
(
1

r

)
ρ(tr, r

′) +
1

c

ρ̇(tr, r
′)

r
r̂ − µ0J(tr, r

′)

r

]
=

1

4πϵ0

∫
d3x′

[
ρ(tr, r

′)

r2
r̂ +

1

c

ρ̇(tr, r
′)

r
r̂ − J(tr, r

′)

c2r

]
This form of E is known as Jefimenko’s equations, and is the most general (relativistic) form for the E field. Similarly, you can
carry out the derivation for the B field, giving the result:

B =
µ0

4π

∫
d3x′

[
J(tr, r

′)

r2
+

J̇(tr, r
′)

cr

]
× r̂

and that wraps up our discussion of E and B. Now, our next goal for the next few lectures is to derive the field and potential for a
moving point charge, using these equations. To this end, we will begin setting up for it now. Consider a particle moving along
a path given by w(t), and let’s consider the potential at some arbitrary point P . One thing we will note first is that despite the
concept of retarded time, it is still impossible for the field at P at a given time t to be caused by the signal emitted from two different
points in space.

The proof is as follows: suppose that this is possible, such as in the diagram below:
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w(t1) w(t2)

c∆t1 c∆t2

P

v(∆t1 −∆t2)

If this were true, then by the triangle inequality, we’d be able to write:

v(∆t1 −∆t2) + c∆t2 ≥ c∆t1

v(∆t1 −∆t2) ≥ c(∆t1 −∆t2)

∴ v ≥ c

so if this were true, we are forced to conclude that the particle travels faster than the speed of light, which is impossible for massive
particles (that is, particles having mass).

Now, one final comment before we end today’s lecture. The discussion so far with the potentials is only true for point sources. But,
now consider sources which are distributed over a non-point volume. Due to the retarded time, the volume we integrate over to
calculate V (t, r), even though we integrate at a fixed time, is not going to be the volume over which the charge is distributed. To
illustrate this further, consider the following scenario:

P

Suppose we want to evaluate the field at P . The contribution from the front of the cylinder (red) takes a certain time to arrive,
but the back (green) takes a longer time to cover that same distance. Therefore, the signal measured at time t comes from the
contribution of the front, and also the back but at an earlier point in time, to compensate for that extra travel distance. So, when
we integrate over the entire volume, we aren’t integrating over the charge distribution, but an extended version of the charge
distribution to account for the time of travel. We will continue this discussion next lecture.

24 March 31

24.1 The Potential of a Moving Point Charge

Last time, we derived the equation for the potential:

V (t, r) =
1

4πϵ0

∫
d3x

ρ(tr, r
′)

r

and we left off with the observation that if we are integrating over a moving volume, then the effective volume we integrate over is
not ρ at a fixed time, since the signal from different points within ρ take differing amounts of time to reach the point P . Explicitly,
this is encoded in the tr dependence of ρ, since tr = t− r

c means that tr will be different at different r.

Again, let’s remind ourselves of the setup, and also label some lengths in the diagram:

P

dLvδt

d̃L

From the diagram, we can derive a relation between dL and d̃L:

vδt+ dL = d̃L = cδt
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The cδt refers to the distance travelled by the signal from the back of the cylinder in the time it took the whole volume to move a
length vδt. Then, we can now solve for d̃L:

d̃L =

(
c

c− v

)
dL

As-is, this equation is still not complete. We are missing the fact that this only holds if P is directly in the direction of v, so more
generally, we need to extract the component of the velocity that points toward P :

d̃L =

(
c

c− r̂ · v

)
dL

And if we regard a point charge as a really really small volume, we can use this integral to derive the potential of a point charge.
Ordinarily, we know that the integral alone would evaluate to q in the stationary case (since we just set ρ = qδ(3)(r)); here it’s
basically the same story except now we scale by the c

c− r̂·v factor because of the length scaling:

V (t, r) =
1

4πϵ0

∫
ρ(tr, r

′)

r
d3x =

1

4πϵ0

qc

r(c− r̂ · v)
(24.1)

Although this approach gets the correct result, it should be a bit unsatisfying given that we got here by approximating a point
charge as having a tiny volume. There is a more satisfying way to arrive at this result, using Green’s functions. Suppose the point
charge is given by w(t), then we write the charge density as ρ(r) = δ(3)(r−w). Using this as our source, then we have:

V (t, r) = − 1

ϵ0

∫
(c dt′)(d3x)

(
− 1

4π

δ(c(t− t′)− r)
r

)
qδ(3)(r′ −w)

= − 1

4πϵ0

∫
(c dt′)(d3x)

δ(ct− ct′ − r)
r

qδ(3)(r′ −w(t′))

One thing to note about this integral: the first delta function essentially only allows us to choose points in the past light cone, since
we only choose points where t′ = t − r

c . Now, taking the spatial integral, we see that this effectively sets r = w(t′) due to the
second delta function, so:

V (t, r) =

∫
(c dt′)

δ(ct− ct′ − |r−w(t′)|
r

To evaluate this, recall the following relation from the delta function:∫ ∞

−∞
δ(f(x)) dx =

1

|f ′(x0)|

∫ ∞

−∞
δ(x) dx =

1

|f ′(x0)|

In our case, we have f(t′) = ct− ct′ −
√
(r−w(t′))(r−w(t′)), so:

df

dt
= −c−

2(r−w(t))
(
−dw

dt

)
2
√

(r−w(t′))(r−w(t′))
= −c+

r · v
r

Now, when you take the integral, we get:

V =
q

4πϵ0

c∣∣−c+ r·v
r

∣∣ · 1r
We should be careful that in this expression r = r −w(tr), so r is evaluated at the retarded time, not the present. Writing this
result in a cleaner way, we get the same results as before:

V =
q

4πϵ0

c

(cr − r · v)

The vector potential follows basically the same story: the integral we wish to calculate is:

A =
µ0

4π

∫
d3x

J(tr, r)

r

so for a point charge, J(t, r) = ρv = δ(3)(r′ −w(t′))v(t), so by the same argument, we have:

A =
µ0

4π

qv

r
c

(c− r̂ · v)
=

µ0

4π

qcv

(cr − r · v)
=

V

c2
· v

Again, here we have r = r−w(tr): all the quantities here are evaluated at the retarded time, not at the present!
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25 April 2

Today, we’re going to continue our discussion from last lecture. Recall that there, we calculated the following equations for the
fields:

V =
1

4πϵ0

qc

rc− r · v
A =

µ0

4π

qcv

cr − r · v
One thing to note about this equation is that the scaling factor in the denominator is not due to length contraction! Although they
look similar in form, this factor is a result of the fact that we are no longer integrating over the charge distribution because of its
motion. With V andA, we can now calculate E and B using the standard formulas:

E = −∇V − ∂tA B = ∇×A

To begin this process, we start by calculating some gradients we will need. First up, we calculate∇r:

∇r = ∂i

√
(xk − wk)(xk − wk) =

2(xk − wk)(δ
k
i − ∂iw

k(tr))

2r
=

r
r
−∇tr(r̂ · v)

Now we need ∇tr :
∇tr = ∂i

(
t−

r
c

)
= −1

c
∇r

We now combine the two equations together and get:

∇r =
cr̂

cr̂ − r · v
∇tr = −

r
cr − r · v

Next up, ∂tr:

∂tr = ∂t
√

r · r =
2r · ∂tr
2
√

r · r
= r̂ · ∂t(r−w(t)) = −r̂ · v(tr)

(
∂tr
∂t

)
here we need ∂ttr :

∂ttr = ∂t

(
t−

r
c

)
= 1− 1

c
∂tr

combine again:

∂tr = −
r̂ · v

1− r̂·v
c

∂ttr =
1

1− r̂·v
c

Now we come back to the main equation:

−∇V = −∂i

(
qc

4πϵ0

1

cr − r · v

)
=

qc

4πϵ0

1

(cr − r · v)2
∂i(cr − r · v) = qc

4πϵ0

1

(cr − r · v)2

[
c2r

cr − r · v
− (∂irk)vk − rk(∂ivk)

]
Notice that the gradient of the dot product is very nice in index notation – all you have to do is use product rule, as opposed to
using the product rule given at the end of Griffiths. Now, ∂ivk(tr) is:

∂ivk(tr) = ∂itrv̇k = (∂itr)ak

So now:
−∇V =

qc

4πϵ0

1

(cr − r · v)2

[
(c2 − v2)r
cr − r · v

− v +
(a · r)r
cr − r · v

]
As for ∂tA:

−∂tA = −∂t

[
µ0

4π

qcv(tr)

cr − r · v

]
=

µ0qc

4π

[
v∂t(cr − r · v)− (∂tv)(cr − r · v)

(cr − r · v)2

]
=

q

4πϵ0

1

(cr − r · v)2

[
rv2 − cr · v − r(a · r)

cr − r · v
v − ra

]
Author’s Note: I will admit that the algebra was done a bit more carefully in lecture than I’ve typed up here. However, I will also
say that the calculations were largely uninteresting – it’s just a bunch of chain rule so I didn’t bother including it.
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26 April 4

26.1 Field of Moving Charges

Last time, we concluded with derivation of the components to the E field:

−∇V =
qc

4πϵ0

1

(cr − r · v)2

[
(c2 − v2)r
cr − r · v

+
(a · r)r
cr − r · v

− v

]
−∂tA =

qc

4πϵ0

1

(cr − r · v)2

[
rv2 − c(r · v)− r(a · r)

cr − r · v
v − ra

]
Putting these two together:

E =
qc

4πϵ0

1

(cr − r · v)3
[
(c2 − v2)r −

r
c
(c2 − v2)v + (a · r)r −

r
c
(a · r)v − r2a+

r
c
(r · v)a

]
Using some triple cross product magic:

E =
1

4πϵ0

qc

cr − r · v)3
{
(c2 − v2)

(
r −

r
c
v
)
+ r ×

[(
r −

r
c
v
)
× a
]}

The first term is called the velocity term, and the second is called the acceleration term. Notice that the second term in the braces
scales as r2, so overall the acceleration term scales as 1

r . This will become important in chapter 11, when we talk about radiation.
With E calculated, we calculate B:

B = ∇×A = ∇
( v

c2
V
)
=

1

c2
ϵijk [(∂jV )vk + V ∂jtrak]

working out the cross products and chain rule using the identities we derived in last lecture, we get:

B = −µ0

4π

qc

(cr − r · v)3
r ×

[
(c2 − v2)v + (a · r)v + (cr − r · v)a

]
with some reorganization, it is possible to then find that B = 1

c
r × E, consistent with our earlier conclusion with waveguides.

Another thing to note is that everything in these equations should be evaluated at the retarded time! That is, r = r−w(tr),v =

v(tr),a = a(tr).

Example 26.1

We will explore an application of the formula we just derived by considering a particle that travels at constant velocity. We
will choose our coordinate system such that the particle travels along the x-axis. A diagram of the situation is as follows:

x

y

v

In this case, we have a = 0 and w(t) = v(t) = vtx̂. Therefore:

r = r−w(tr) = r− vtr

and consequently,
r −

r
c
v = r− vtr + (tr − t)v = r− vt ≡ R
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Here, we define R to be the vector pointing from the charge at the present time to the field point r. With this, the E field is
then:

E =
1

4πϵ0

qc

(cr − r · v)3
[(

(c2 − v2)
(

r −
r
c
v
))]

=
1

4πϵ0

qc

(cr − r · v)3
(c2 − v2)R

as an exercise, you can show at home that cr − r · v = cR
[
1− v2

c2 sin2 θ
]
, but we will use that result to simplify the above:

E =
q

4πϵ0

R̂

R2

(
1− v2

c2

)
(
1− v2

c2 sin2
)3/2

Now, notice that the direction is determined byR, which means that the field direction of is given by the position of the
particle in present time, not retarded time! In addition, because of the sin θ factor in the denominator, it means that the E
gets stronger as θ → π

2 , and the field lines "squeeze" closer in that direction. This is better illustrated via a diagram:

v

E

As for the B field, we know that B = 1
c
r̂ ×E, so:

B =
1

c

r
r
×E =

1

cr

(
R+

r
c
v
)
×

(
q

4πϵ0

R̂

R2

1− v2/c2

(1− v2

c2 sin2 θ)3/2

)

Becuase R̂× R̂ = 0, only the second term survives. This gives us a B field that circles around the particle:

x

y

v⃗

We also talked about an intuitive way to think about this, called the Thomson Kink Model. To be completely honest, I
can’t explain this part of it better than Griffiths does, so just read examples 10.4 and 10.5 there for a better description.

27 April 7

Today, we will begin discussing chapter 11, which is about radiation. Specifically, this chapter will deal with fields which decay as 1
r ,

as opposed to 1
r2 as we typically see in electrostatics. We have to handle these fields with care, because quantities like the power:

P =

∮
r→∞

1

µ0
(E×B) da = finite
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are finite for such fields even as r → ∞. In this sense, we sometimes say that the energy is able to "detach" away from the sources
and propagate all the way to infinity. From Jefimenko’s equations,

E =
1

4πϵ0

∫ [
ρ(tr, r

′)

r2
r̂ +

ρ̇(tr, r
′)

cr
r̂ − J̇(tr, r

′)

c2r
r̂

]
dτ ′

B =
µ0

4π

∫ [
J(tr, r

′)

r2
× r̂ +

J(tr, r
′)

cr
× r̂
]

Based on these equations, the terms with 1
r dependence are the ρ̇ and J̇ terms. In order to calculate the radiation field, we will make

some approximations:

1. r ≫ d, where d is the length scale for the size of the source.

2. λ ≃ c
ω ≫ d. This is used to suppress the details concerning the structure of the source itself.

3. T ≪ r
c or 1

ω ≪ r
c . This assumption ensures that the time varying changes in the source have a significant impact.

Example 27.1: Electric Dipole Radiation

To illustrate a sample calculation, we will use the situation of electric dipole radiation. Consider a positive and negative
charge separated by a distance d, oscillating according to q(t) = q0 cos(ωt).

+q

−q

I

Given this, the current is I = qv = −q0ω sin(ωt)ẑ. We can also calculate the potential very easily, as it is given by:

V (r, t) =
1

4πϵ0

q0 cos
[
ω
(
t− r+

c

)]
r+(tr)

− 1

4πϵ0

q0 cos
[
ω
(
t− r−

c

)]
r−(tr)

Now, we can calculate the approximations we need separately. First, we will need to approximate r±:

r± =

√
r2 +

(
d

2

)2

∓ rd cos θ ≈ r

(
1∓ d

2r
cos θ

)
=⇒ 1

r±
≈ 1

r

(
1± d

2r
cos θ

)
here, we used the approximation that (1 + x)n ≈ 1 + nx when x ≪ 1, suppressing the higher order terms. This uses the
first assumption of d

r ≪ 1. Next, we have the approximation of the argument in the cosine:

ω
(
t−

r±
c

)
=

ω

c

[
ct− r

(
1∓ d

2r
cos θ

)]
≈ ωt− ωr

c
± d

2(c/ω)
cos θ + . . .

Therefore, we can now evaluate the cosine using the addition rule:

cos
[
ω
(
t−

r±
c

)]
= cos

(
ωt− ωr±

c

)
≈ cos

[
ω
(
t− r

c

)
± ωd

2c
cos θ

]
= cos

[
ω
(
t− r

c

)]
cos

[
ωd

2c
cos θ

]
∓ sin

[
ω
(
t− r

c

)]
sin

[
ωd

2c
cos θ

]
So now going back to V (r, t):

V (r, t) =
q0

4πϵ0

1

r

{(
1 +

d

2r
cos θ

)[
cos
(
ω
(
t− r

c

))
− sin

[
ω
(
t− r

c

)] wd
2c

cos θ

]
−
(
1− d

2r
cos θ

)[
cos
[
ω
(
t− r

c

)]
+ sin

[
ω
(
t− r

c

)] ωd
2c

cos θ

]}
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Now using the small angle approximation (sin θ ≈ θ, cos θ ≈ 1), this simplifies to:

V (r, t) ≃ q0d

4πϵ0

1

r2
cos θ cos

[
ω
(
t− r

c

)]
− 1

4πϵ0

q0d cos θ

r

(ω
c

)
sin
[
ω
(
t− r

c

)]
The first term is the dipole potential from electrostatics, and the second term is the radiation term, indicated by its 1

r

dependence. A similar approach can be taken to calculateA:

A =
µ0

4π

∫
J(tr, r)

r
dτ ′ = −µ0

4π

∫ d/2

−d/2

q0ω sin
[
ω
(
t− r

c

)]
ẑ

[r2 − 2z′r cos θ + (z′)2]
1/2

dz′

Note that we integrate over z′ here becuase J generated by I is only in the ẑ direction. As for the bounds of the integral,
this is given by the motion of the two charges. So, the integral becomes:

A = −µ0q0ωẑ

4π

∫ d/2

−d/2

1

r

(
1 +

z′

2r
cos θ

)
sin

[
ω
(
t− r

c

)
+

ωz′

2c
cos θ

]
dz′

= −µ0q0ω

4π
ẑ

∫ d/2

−d/2

1

r

(
1 +

z′

2r
cos θ

){
sin
[
ω
(
t− r

c

)]
cos

(
ωz′

2c
cos θ

)
+ cos

[
ω
(
t− r

c

)]
sin

(
ωz′

2c
cos θ

)}
dz′

Now, we will make some approximations. In particular, the function z′

2r cos θ is odd, so over an even interval it just goes to
zero. Secondly, the (z′)2 terms are on the order of d3, which is considered small compared to the length scale of the integral,
so we ignore these terms as well. Therefore, the overall integral just simplifies to:

A ≈ −µ0q0ω

4π

d

r
sin
[
ω
(
t− r

c

)]
ẑ
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Last lecture, we found V and A, and with these fields determined we can get the E and B fields:

E =
µ0p0ω

2

4π

(
sin θ

r

)
cos
[
ω
(
t− r

c

)]
θ̂

B = −µ0p0ω
2

4πc

(
sin θ

r

)
cos
[
ω
(
t− r

c

)]
ϕ̂

here, we denote p0 = qd is the polarization and q = q0 cos(ωt) is an oscillating charge. There are a couple things to note about this
equation. Firstly, the E and B oscillate in perpendicular directions, which makes sense given what we learned in chapter 9. Further,
these results are also consistent with our conclusion that the E and B fields are in phase with each other, which is also what we
found in chapter 9. With the E and B fields, we can now figure out the Poynting vector:

S =
1

µ0
(E×B) =

µ0

c

{
p0ω

2

4π

(
sin θ

r

)
cos
[
ω
(
t− r

c

)]}2

r̂

As a time-averaged quantity:

⟨S⟩ = µ0p
2
0ω

2

32π2c

sin2 θ

r2
r̂

What’s interesting to note about this is that the time averaged S is pointing in the r̂ direction, which is exactly perpendicular to the
oscillation direction. This is what we found in chapter 9, albeit through an intuitive argument back then. Here, we see the explicit
mathematical derivation.

28.1 Rayleigh and Mie Scattering

When considering the interaction between light and particles, there are two limits that we can consider. The first of which is when
the wavelength of light is much larger than the size of the particle. In this limit, because the particles are so small, we can essentially
view them as vibrating coherently with the incoming electric field, and therefore they radiate dipole radiation coherently.
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In this situation, the primary contribution of the waves comes from the dipole radiation, and therefore the radiated electromagnetic
wave is frequency dependent (you can see this via the ω2 dependence above). This dependence explains why the sky is blue – when
the light from the sun scatters off molecules in the atmosphere (O2,N2,H2), the light scatters off them via dipole radiation. Further,
since the power scales proportional to ω4, this heavily favors large frequencies, which is why we see the sky as primarily blue. This
phenomenon is known as Rayleigh Scattering.

The other limit is when we consider the size of the particle to be much larger than the wavelength. In this limit, the wave nature
of the EM waves is suppressed, and in this case the light bounces off these materials just like particles off a mirror. In this case,
there is no frequency dependence, and this phenomenon explains why clouds are white – water molecules are on the order of 1mm,
whereas light waves have wavelengths on the order of 500nm, so all the light bounces off equally, leaving us with white clouds.
This phenomenon is called Mie Scattering.

28.2 Magnetic Dipoles

Now, we will consider discussing magnetic dipoles. Consider the following situation, where we have a loop with a current
I = I0 cos(ωt) shown in the diagram:

z

y

x

ϕ̂ = ŷ
P

b

dl′

ϕ

I = I0 cos(ωt)

de⃗′

We want to find the electric and magnetic fields over all space. As always, the vector potential can be calculated using:

A =
µ0

4π

∫
J(r, t− r/c)

r
dτ ′ =

µ0

4π

∫
I(r, t− r/c)

r
dl′

The reason we can write it in this form is because of the following relation for current density: J dτ = JA dl = I dl. Now although
dl has both an x and y-component, the x component will eventually cancel due to the symmetry in the system. Thus, we’re only
left with the y-component. Because we need only care about the y component, then we may write:

A =
µ0

4π
ŷ

∫
I(r, t− r/c)

r
cosϕ′ dl′

We will now use the approximations we had from earlier: b ≪ r, c
ω ∼ λ ≫ b and r ≫ c

ω . Making these approximations, we
eventually get the formula:

A(r, t) ≃ −µ0m0

3π

ω

c

(
sin θ

r

)
sin
[
ω
(
t− r

c

)]
ϕ̂

You can verify this by explicitly computing the integral; in the interest of time we won’t compute it here. Since ρ = 0, then V = 0,
so the B field comes directly out of ∇×A:

B = ∇×A = −µ0m0ω
2

4πc2

(
sin θ

r

)
cos
[
ω
(
t− r

c

)]
θ̂

The E field can be found using −∂tA:

E = −∂tA =
µ0mω2

4πc

(
sin θ

r

)
cos
[
ω
(
t− r

c

)]
ϕ̂
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With B and E, we may now calculate the power:

Pm =

∫
⟨S⟩ r2 sin θ dθ dΩ =

µ0m
2
0ω

4

12πc3

Now, with the electric dipole calculated from last lecture, we can now compare the power radiated by both the electric and magnetic
dipole:

Pm

Pe
=

1

c2

(
m2

0

P 2
0

)
=

1

c2

(
πI0b

2

qd

)2

∼ ω2b2

c2

To get the approximation, we use I0 = qω and use b ∼ d, because we assume the electric and magnetic sources are on the same
scale. Now, because we’ve assumed earlier that b ≪ c

ω , this implies ωb/c ≪ 1, hence Pm ≪ Pe. This shows that the electric power
dominates the magnetic power under our assumption, and this explains why we only focused on E waves in chapter 9.
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29.1 Radiation for an Arbitrary Source Distribution

Now that we’ve looked at radiation for specific source configurations, we will now look at how to calculate the radiation emitted by
an arbitrary source distribution. Consider an arbitrary ball of sources, for which we want to find the field V (r, t) everywhere. Well,
the equations don’t change, so:

V (r, t) =
1

4πϵ0

∫
ρ(r, tr)

r
dτ ′

Calculating this for a general source is usually hard, so we will make some simplifying approximations. First, because the radiation
field dominates at large r, we will make the approximation that r ≫ r′, so that the 1

r2 terms have already died out. With this
assumption, we can approximate r:

r =
√
r2 + r′2 + 2r · r′ ≃ r

(
1− r · r′

r2

)
Using the approximation that (1 + x)n ≈ 1 + nx when x is small (and indeed, r · r′/r2 is small since the denominator is quadratic
in r), then we can write 1/r:

1

r
=

1

r

(
1 +

r · r′

r2

)
So, we can now Taylor expand ρ:

ρ(r, t− r/c) = ρ

(
r′, t− r

c
+

r · r′

c

)
≈ ρ(r, t0) + ρ̇(r, t0)

(
r̂ · r′

c

)
+

1

2
ρ̈(r′, t0)

(
r̂ · r′

c

)2

Now, we impose our second assumption, this one being on ρ̇ and the higher derivative terms. We will assume that the time variation
must be fast enough. This is enforced through the ratios:∣∣∣∣ ρ̈ρ̇

∣∣∣∣ , ∣∣∣∣ ˙̇ρ̇ρ̈
∣∣∣∣ , ∣∣∣∣ρ4˙̇ρ̇

∣∣∣∣ , · · · ≪ c

r′

You can essentially think of this as requiring that the wavelength of the waves is much larger than the structure size, or mathematically
r′ ≪ cT ≃ λ. Intuitively this also makes sense, since high frequency waves die out and don’t make it very far, and what’s left are
the low frequency waves with large λ. Practically speaking, what this approximation does is allow us to keep only the first order r′

terms. Therefore, our V (r, t) becomes:

V (r, t) =
1

4πϵ0

1

r

[∫
ρ(r, t0) dτ

′ +
r̂

r

∫
r′ρ(r′, t0) dτ

′ +
r̂

c

d

dt

∫
r′ρ(r′, t0) dτ

′
]

=
1

4πϵ0

Q

r
+

1

4πϵ0

r̂ · p(t0)
r2

+
1

4πϵ0

r̂ṗ(t0)

cr

For the second term, we use the fact that the electric dipole moment is defined as p =
∫
r′ρ(r′) dτ to simplify it. The first two

terms should be familiar: these are the multipole expansion terms, and the third one is due to radiation. The third term ends up
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being the only term we care about, since when we calculate the gradient of the potential the third term is the only one that produces
a 1

r dependence term.

For the vector potential, we have the equation:

A =
µ0

4π

∫
J(r, tr)

r
dτ

Since J = ρv, computing an integral like
∫
J dτ is essentially the same as summing over each individual charge:∫

J dτ ∼
∑
i

qivi =
∑
i

qi
dr′i
dt

=
d

dt

∑
i

qir
′
i ∼ ṗ(t0)

so we can loosely approximate such an integral as the time derivative of the dipole moment. Then, because
∫
J dτ is already on the

order of r′, any other higher order terms will be second order corrections, and hence we can just take 1
r ≃ 1

r . All in all, the relevant
potentials are:

V ≃ 1

4πϵ0

r · p(t0)
cr

A ≃ µ0

4π

ṗ(t0)

r

To find the field, we now take E = −∇V − ∂tA and B = ∇×A as usual. Starting with ∇V , recall that the only term we care
about in V is the third term, so:

(∇V )i =
1

4πϵ0

1

cr
∇ [̂r · ṗ(t0)]

Now the gradient:

∂ip
j(t0) = (∂it0)p̈

j(t0) = −1

c
r̂ip̈

j(t0)

where we use ∂jt0 = − 1
c∇r. Now, written in vector form:

(∇V )i = − 1

4πϵ0

r̂ · p̈(t0)
rc2

r̂

The ∂tA term is easy:

∂tA =
µ0

4π

p̈(t0)

r

So putting these two together to get E:

E = − 1

4πϵ0

r̂ · p̈(t0)
rc2

r̂− µ0

4π

p̈(t0)

r
=

µ0

4π
[̂r× (r̂× p̈(t0)]

where we’ve used the vector triple product identity a× (b× c) = b(a · c)− c(a · b) to write it in its final form. To findB, we use
B = ∇×A:

B = ∇×A =
µ0

4π
ϵijk∂j ṗk(t0) =

µ0

4π
ϵijk(∂jt0)p̈k

Again using ∂jt0 = − 1
c∇r, we have:

B =
µ0

4πr
ϵijk

(
−1

c
r̂j

)
p̈k = − µ0

4πcr
[̂r× p̈(t0)]

Notice that indeed we have B = 1
c r̂×E, you can check this for yourself also if you’d like.

Example 29.1

Under the special case p = pẑ, ṗ = ṗẑ, and p̈ = p̈ẑ (i.e. one-dimensional motion), then the E and B fields take the form:

E =
µ0p̈(t0)

4π

(
sin θ

r

)
θ̂

B =
µ0p̈(t0)

4πc

(
sin θ

r

)
ϕ̂

Combined, we can calculate S:

S =
1

µ0
(E×B) =

µ0[p̈(t0)]
2

16π2c

(
sin θ

r

)2

r̂

52



So the power is:

P =

∫
S · da =

µ0[p̈(t0)]
2

16π2c

∫
sin2 θ

r2
(r2 sin θ) dθ dϕ =

µ0[p̈(t0)]
2

6πc

In the case of a point charge, we have p = qd, and hence p̈ = qä = qaẑ, so the power becomes:

P =
µ0q

2a2

6πc
(29.1)

This is the well-known Larmor Formula, which gives the power radiated by a point charge. Notice that it only radiates
power when it is accelerated. We will revisit this formula and derive it from a different perspective next week.
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30.1 Radiation of a Moving Point Charge

Recall that at the end of last lecture, we derived the Larmor formula (Eq. (29.1)), which relates the radiation of a point charge to
its acceleration. While the previous derivation does indeed work, it’s not exactly very satisfying (at least in my view), since you
still make the approximation that a point charge is a charge enclosed in a very small volume. We will correct this by deriving the
Larmor formula through a completely different means, which doesn’t involve such an assumption.

To begin this analysis, we start off with a diagram:

w⃗(t)

ts

We regard the particle as having position given byw(t), and its signal emitted at time t reaches our sphere at time ts. In this context,
t is considered the retarded time. Now, recall that for a moving particle, we derived earlier that the electric field follows:

E(r, ts) =
q

4πϵ0

r
(r · u)2

[
(c2 − v2)u+ r × (u× a)

]
Recall that the first term represents the velocity field, and the second represents the acceleration field. TheB field followsB = 1

c r̂×E

as usual. Our goal is to derive the Larmor formula, so we want to find an expression for the power P (t) coming out of the particle,
which is the same power that arrives to the sphere at time ts. As usual, the power is a surface integral of the Poynting vector S, so:

S =
1

µ0
(E×B) =

1

µ0c
(E× r̂ ×E) =

1

µ0c

[
|E|2 r̂ −E(E · r̂)

]
Because we are only considering the radiation field, we can drop the velocity field since it doesn’t go as 1

r . Given this assumption,
this means that E is approximately proportional to r × (u × a), and hence the second term which has an E · r term will die.
Therefore, the final equation for S is:

S =
1

µ0c
|E|2 r̂

Now we look to simplify the E term from this equation. To do this, we will first assume tat v = 0 but a ̸= 0; this may look like a
strange assumption at first, but bear with me as we derive this and eventually generalize to the v ̸= 0 case. Under these assumptions,
then u = cr̂ − v = cr̂:

E =
q2

16π2ϵ20

r2

(r3c3)2
∣∣c3 r̂ + cr × (r̂ × a)

∣∣2
=

q2

16π2ϵ20

1

r4c6
∣∣c3 r̂ + cr̂(a · r)− ar

∣∣2
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From here, we only take terms that are proportional to r2 – this is so that we get only the ∼ 1
r2 terms for S, and from there when

integrating we get out only the 1
r terms. Now, expanding the square:

|E|2 =
q2

16π2ϵ20

1

r4c6
(
c2a2r2 + c2(a · r)2 − 2c2(a · r)2

)
=

µ2
0q

2

16π2

1

r4
(
a2r2 − (a · r)2

)
Now, a · r is the same as ar cos θ by definition of the dot product, so this now simplifies to:

|E|2 =
µ2
0q

2

16π2

a2

r2
sin2 θ

So now we have our final expression for S:

S =
µ0q

2a2

16π2c

(
sin2 θ

r2

)
r̂

Finally, the power:

P =

∮
S da =

µ0q
2a2

16π2c

∫ π

0

sin2 θ sin θ dθ

∫ 2π

0

dϕ =
µ0q

2a2

6πc

which is exactly the Larmor formula, this time derived without the assumption of volume. It should also be clear after this derivation
that the Larmor formula only works when v = 0, as that was one of the assumptions we made to simplify E. Generally, this is a
pretty good approximation anyways for v ≪ c, but to be completely formal, when v ̸= 0 we have to consider not only the fact that
E changes but S changes too. To see this, consider a moving particle, and think about the number of wavefronts emitted over a
given time interval, versus the number of wavefronts received at a distance away:

particle

screen

Because of this velocity, you can check that the effective wavelength λeff = (c− v)T , where T is the period between the wavefronts.
The number of wavefronts received Nreceive is given by:

Nreceive =
(c∆t)/λeff

∆t
=

c

(c− v)T
=

(
c

c− v

)
Nemit

Now in the general case only the velocity in the direction of emission matters, so we replace v with v · r, giving us the formula:

Nemit =
(
1− v · r

c

)
Nreceive

We will continue this discussion next time and see how this subtlety affects the power emitted.
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31.1 Lienard Formulation

Last lecture, we left off with our discussion of a general formula for the power radiated by a particle when v ̸= 0. Picking up where
we left off, we concluded last that the power emitted and the power received at a time ts later may be written as:

dW

dt
=

dW

dts

(
1−

r · v
c

)
=

dW

dts
(1− (cr − r · v))

=
dW

dts

1

cr
(u · r)
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Now our E field is of the form:
E =

q

4πϵ0

r
(r · u)

[r × (cr̂× a)]

Now, the power emitted by the particle may be written as P =
∫
S da, and the infinitesimal area may be decomposed as da = r2 dΩ,

where Ω represents the solid angle. Thus, we may write dP
dΩ as:

dP

dΩ
=

1

µ0c

(
q2

16π2ϵ20

r2

(r · u)6
|r × (u× a)|2

)
︸ ︷︷ ︸

S

·r2

Ordinarily this would be fine, but to account for the velocity of the particle, we have to scale this by the factor introduced at the
beginning of the lecture:

dP

dΩ
=

1

µ0c

(
q2

16π2ϵ20

r2

(r · u)6
|r × (u× a)|2

)
· r2

(u · r
cr

)
=

q2

16π2ϵ0

|r × (u× a)|2

(r̂ × u)5

The power then, is this this integral over the solid angle:

P =

∮
dP

dΩ
sin θ dθ dϕ =

µ0q
2γ6

6πc

(
a2 −

∣∣∣∣v × a

c

∣∣∣∣2
)

(31.1)

This is called the Lienard generalization of the Larmor formula. Notice the factor of γ present in the numerator, meaning that the
added contribution due to the velocity (from the first term) is very negligible, until we get to speeds v ∼ c.

31.2 Bremsstrahlung (Braking Radiation)

This occurs particularly in the case where v ∥ a. So, first we calculate some cross products:

u× a = (cr̂ − v)× a = cr̂ × a =⇒ r̂ × (u× a) = cr̂ × (r̂ × a) = cr̂(r̂ · a)− ca

Thus, the numerator |r × (u× a)|2 becomes:

|r × (u× a)|2 = c2(a2 + (a · r̂)2 − 2(a · r̂2) = a2c2(1− cos2 θ) = c2a2 sin2 θ

The denominator r̂ · u becomes:

r̂ · u = r̂ · (cr̂ − v) = c− v · r̂ = c− v cos θ = c(1− β cos θ)

we define β = v/c. Therefore, putting this all together:

dP

dΩ
=

q2

16π2ϵ20

|r̂ × (u× a)|2

(r̂ · u)5
=

µ0q
2a2

16π2c

sin2 θ

(1− β cos θ)5

There is also a maximum angle that the radiation is shot out of, which you will do for homework.

Example 31.1: Stability of "Classical" Hydrogen Atom

Consider the classical model of a Hydrogen atom, with a proton with +e charge in the center and an electron orbiting it at a
distance of R ∼ 10−10 m. Classically, the energy of the particle is given by:

U =
1

2
mv2 − ke2

R

According to the formula for centripetal force:

ke2

R
= mac =

mv2

R
=⇒ 1

2
mv2 =

ke2

2R

combining this with the previous equation yields a total energy of:

E = −ke2

2R
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This numerically comes out to about -13.6 eV, the well known ground state energy of hydrogen. From this calculation, we
can also deduce v, which comes out to roughly v ∼ 10−2c, so this motion is still considered non-relativistic. So, we can use
the Larmor formula:

P =
µ0q

2a2

6πc

Now that we know accelerating particles give off radiation, so given that the electron radiates energy how long does it take
before it loses enough energy to crash onto the proton? Well, we can calculate that now:

dE

dt
= −P = −µ0q

2a2

6πc

d

dt

(
−ke2

2r

)
=

µ0q
2

6πc

(
v2

r

)2

= −µ0q
2

6πc

(
ke2

mr2

)2

equating the two, we now have a differential equation in r:

ke2

2r2
dr

dt
= −µ0q

2

6πc

(
ke2

mr2

)2

doing separation of variables and integrating to the characteristic time τ , we get:

τ =
4π2ϵ20
e4

m2c3R3
0 ∼ 10−11 seconds

This is really bad! Obviously this is not true, and it’s one of the many things that motivated quantum mechanics. As you
know, quantum mechanics doesn’t treat the electron as a physical object around the atom but rather models its position as a
wavefunction, resolving this paradox.
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32.1 Self-Force/Radiation Reaction

Recall the Larmor formula for nonrealtivistic particles:

Prad =
µ0q

2
0a

2

6πc

From this formula, it may be natural to assume that the power, which is also written as F · v = −Prad, but this is not true! The
reason for this is because the Larmor formula only considers radiation that extends to infinity, so the power contributed by the
velocity field is missing.

However, because energy continuously flows in and out of the velocity field, it is possible for us to still use the above formula, just
only when the net velocity of the particle is zero. For periodic motion, this would mean that we can consider the motion over a time
interval τ where the particle returns to the same place, at which point the contribution by the velocity field should be zero. Thus:∫ T

0

F · v dt = −
∫ T

0

µ0q
2a2

6πc
dt

= −
∫ T

0

µ0q
2

6πc

dv

dt

dv

dt
dt

=

∫ T

0

µ0q
2

6πc

d2v

dt2
· v dt−

∫ T

0

d

dt

(
µ0q

2

6πc

dv

dt
v

)
dt

The second term equals zero if the particle returns to the same spot. This leaves us with the equality:∫ T

0

F · v dt =

∫ T

0

µ0q
2

6πc

d2v

dt2
v dt

comparing the integrands, we get the result:

Frad =
µ0q

2

6πc

d2v

dt2
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This is known as the Abraham-Lorentz formula. However, this is not a very rigorous way to obtain this equation. Firstly, not all
motion is periodic, so why does this formula work for nonperiodic motion too? Secondly, this only tells you about the self-force
for the component Frad that is along the direction of v, since the integrand is really F · v on the left hand side. So we need an
alternative method to derive this formula.

Before we do though, there is something interesting about this formula that we can point out right away. When forces have ȧ
dependence, invoking Newton’s second law:

µ2
0q

2

6πc
ȧ = ma

this is a differential equation for the acceleration, with solution a(t) = a0e
t/τ , and τ is the prefactor on ȧ. The interesting thing is

that a(t) is now increasing with increasing time, meaning the acceleration gets faster and faster as you go on. Conversely, if you
insist that a = 0, then you will find that if you do try to apply an external force, the particle starts responding to that force before
you even act on it. Obviously both of these solutions are non-physical, but so far there is no mathematical reason why we should
reject them.

32.2 The Dumbbell Model

Now, we move on to finding a better way to derive the Abraham-Lorentz formula. To do so, we use a so-called dumbbell model, in
which we split a charge into a tiny dumbbell with half the charge each:

x

y

+q/2

−q/2

d

#1

#2
ℓ

Recall that the equation for the field of moving charges is given by:

E(r, t) =
q

4πϵ0

r
r · u

[
(c2 − v2)u+ r × (u× a)

]
For simplicity of the model, we will assume that v(tr) = 0 so that u = cr̂, and a = ax̂. Now, let’s consider the force on charge #1
due to charge #2. In this case, we have:

r = ℓx̂+ dŷ, r̂ =
ℓx̂+ dŷ√
ℓ2 + d2

This makes the triple cross product:
r × (u× a) = (r · a)u− (r · u)a

Notice that we also only need to consider the x-component, since the y-components will cancel each other when you add the forces
on both charges (due to symmetry). Therefore, the force on 1 may be written as:

E1x =
q/2

4πϵ0

√
ℓ2 + d2

c
√
ℓ2 + d2

[
c3

ℓ√
ℓ2 + d2

+ ℓa
cℓ√

ℓ2 + d2
− ca

√
ℓ2 + d2

]
=

q

8πϵ0

1

c2(ℓ2 + d2)3/2
(
lc2 − d2

)
x̂

By symmetry E2x is the exact same. Therefore, the self force may be written as:

Fself =
(q
2

)
E1x +

(q
2

)
E2x =

q2

8πϵ0c2
ℓc2 − d2

(ℓ2 + d2)3/2
x̂

so far this treatment is exact, but we ultimately want to model the situation in the d → 0 limit so we need to Taylor expand the
above equation in orders of d. We can’t immediately Taylor expand this just yet, since ℓ also has d dependence that we need to
expand. To begin, we note that ℓ = x(t)− x(tr), so we first Taylor expand x(t) around t = tr :

x(t) = x(tr) + ẋ(tr)(t− tr) +
ẍ(tr)

2
(t− tr)

2
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Noting that t− tr = T and ẋ(tr) = 0 so the second term dies, we can write ℓ as:

ℓ =
1

2
ẍ(tr)T

2 +
1

6
˙̇ẋ(tr)T

3 + . . . (32.1)

simultaneously, we have a relation for ℓ based on pure geometry:

d =
√
(cT )2 − ℓ2 =

√
1− 1

c2T 2

(
1

2
aT 2 +

1

6
ȧT 3 + . . .

)
≈ cT − a2T 3

8c

reversing this equation and solving for T :

T =
d

c
+

a2

8c2

(
d

c

)3

+ . . .

Putting this back into Eq. (32.1) we finally have ℓ in terms of d:

ℓ =
1

2
a

(
d

c

)2

+
1

6
ȧ

(
d

c

)3

+O(d4)

Thus, we now have:

Fself =
q2

8πϵ0c2
ℓc2 − ad2

(ℓ2 + d2)3/2
≃ q2

8πϵ0c2

[
− a

2d
+

ȧ

6c
+O(d2)

]
Notice that we have a term proportional to a. In some sense, this term can be regarded as an effective mass term. To see what this
means, consider Newton’s second law with Fself:(

− q2

16πϵ0d

1

c2

)
a+

q2ȧ

4πϵ0

1

3c2
= m0a

but we can rearrange this equation into:
q2ȧ

4πϵ0

1

3c2
=

(
m0 +

q2

16πϵ0d

1

c2

)
a

Notice how the factor of q2

16πϵ0d
acts as "extra mass" in addition to m0, which is why it is sometimes called the effective mass term.

Looking at this term in close detail, you can see why we can regard it this way. This term denotes the potential energy between the
two charges, and as a form of energy based on Einstein’s equation E = mc2 we know that energy and mass are closely connected.
So, in light of this it does make sense that you can regard this energy as a form of extra mass.
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33.1 Self-Force

Last lecture, we left off with the equation:

q2ȧ

12πϵ0c2
=

(
m0 +

1

4πϵ0

(q/2)2

d

)
a (33.1)

where we now have an added term on the right as an "added mass" term due to the velocity of the particle. Based on the way we’ve
structured this equation, you can regard the left hand side as the Frad that we’re looking for. However, you may notice that this
formula is off by a factor of 1/2, and the reason for this is so far we’ve only considered the contribution from one q/2 to the other
q/2 charge, but didn’t consider the self force on the q/2 charges themselves.

To reconcile this, suppose we have:
Frad(q) = Frad, int

(q
2

)
+ Frad, self

(q
2

)
Now we break each of the q/2 charges into dumbbells with charge q/4, so now:

Frad

(q
2

)
= Frad, int

(q
4

)
+ 2Frad, self

(q
4

)
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Here, we can drop the "self" subscript in Frad, self since the force itself is a self-force, so it’s functionally the same as Frad. Using this
fact, we move it to the left hand side. Then, if you keep iterating this process, making smaller and smaller dumbbells, you eventually
get the system:

Frad(q)− 2Frad

(q
2

)
= Frad, int

(q
2

)
2Frad

(q
2

)
− (2× 2)Frad

(q
4

)
= 2Frad, int

(q
4

)
4Frad

(q
4

)
− (4× 2)Frad

(q
8

)
= Frad, int

(q
4

)
...

We now add all these equations up together, and we see that the left hand telescopes to Frad(q). The right hand side, using our
partial result (Eq. (33.1)), we get:

Frad(q) =
µ0ȧq

2

3πc
· 1
4

(
1 +

1

2
+

1

4
+

1

16
+ . . .

)
=

µ0ȧq
2

12πc

1

1− 1/2
=

µ0ȧq
2

6πc

which is exactly the Abraham-Lorentz formula. This also concludes our discussion of chapter 11, and we now move on to special
relativity.

A small foreword on the special relativity section: it does not follow chapter 12 of Griffiths, but instead Chien-I’s own provided
notes. When I wrote up these notes, the content between the chapters is relatively similar, but it should be noted that there will be
differences at times (especially in the last two lectures).

33.2 Special Relativity

To begin the topic of special relativity, a good place to start are the fundamental postulates of special relativity. These are:

1. Physical laws should be the same in all inertial reference frames.

2. Motivated by Maxwell’s equations c = 1√
µ0ϵ0

. Based on postulate 1, this implies that the speed of light is constant in all
inertial reference frames.

Before we begin our discussion of special relativity is it interesting to note that while the second postulate seems rather arbitrary, it
is in fact quite a natural thing to suppose: the constants µ0 and ϵ0 govern the strength of electric and magnetic fields, so if we are to
believe the first postulate, then we cannot believe µ0 or ϵ0 to change between reference frames – and from here the constancy of c
across reference frames drops out.

With these postulates established, simultaneity is now broken! Consider a situation where Alice is at rest (v = 0) and Bob is in a
rocket ship moving at constant velocity v0. As the rocket ship passes by Alice, Bob emits two EM signals, which travel in opposite
directions, as shown in the diagram below:

D′ D′

1
2v∆t′

From Bob’s reference frame, because he is moving with the rocket, the two signals reach either end of the ship simultaneously.
However, in Alice’s frame, the red signal reaches the left end before the right, because the motion of the ship meant that the red
signal had less distance to cover. So, while Bob’s reference frame preserves the simultaneity of both events, that simultaneity is
broken in Alice’s reference frame, but Bob’s frame is no more "correct" than Alice’s.

33.3 Time Dilation

Now suppose we have the following diagram, where Bob has a "clock" which sends a light signal up and down:
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Bob
Alice

v

If the distance between the two ends is D, then the time measured by Bob would be ∆t = 2D
c . However, for Alice, due to the fact

that the rocket ship is moving relative to her, would see the time interval as:

∆t′ =
2D′

c
= 2

√
1
4v

2(∆t′)2 +D2

c

Rearranging this to solve for ∆t′, we get:

∆t′ =
1√

1− v2/c2
(∆t) = γ∆t

This is the formula we are all familiar with to calculate time dilation. The factor γ ≡ 1√
1−v2/c2

is a common one in relativity that
you should be familiar with. We will continue our discussion of this next time.
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34.1 Time Dilation/Proper time

Last lecture, we covered the idea of time dilation, and derived the relation∆t = γ∆t′. In that example, we had Bob moving with
the rocket ship, where the two events, the emission of the photon and its absorption back occur at the same location in the S′ frame.
Because these two events occur at the same location in the S′ frame, the time difference measured in such a reference frame is
called the proper time, and is denoted ∆τ . This quantity will be important in our later discussions.

34.2 Length Contraction

Here, we touch on the topic of length contraction. Consider a situation below, where Bob is on a rocket ship and Alice is standing
by on a ledge as Bob goes past. Bob is holding a long rod, and at t = 0, the front end of that rod passes by Alice. The length of the
rod, as measured by Bob, is called the proper length, denoted by L0. The proper length is the length measured by an observer that is
moving with no relative motion with the object in question (i.e. Bob).

At some time∆t later, the back of the rod passes Alice, so for Alice she will measure the length as L = v∆t. Because Alice measures
the rod at the same location, her length is denoted by the proper time, L = v∆τ . For Bob, Alice moves over a distance L0 in a
time ∆t′, with a speed v. Therefore, Bob writes L0 = v∆t′. Because we know that ∆t′ = γ∆t, then we get L0 = vγ∆t = γL, and
hence we get L = L0

γ , which is the standard formula for length contraction. Do note, however, that the lengths in the perpendicular
direction, are not contracted! You can see this by the fact that γ = 1 in that case.

34.3 Lorentz Boost/Transformation

We now tackle the above phenomena from a theoretical perspective, by building up to Lorentz transformations. Consider two
frames S and S ′, where S ′ travels with speed v. And, consider an event at time (t, x) in S . We now ask the question: what is the
relation between (t, x) and (t′, x′)?

S S ′

v

(t, x)
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In Galilean relativity, the transformation would be:

t′ = t x′ = x− vt

because time is assumed to pass the same in different reference frames. However, as we shall see, this is not the case in relativity.
To see this more clearly, let’s consider a specific situation: at t = 0, frame S ′ starts moving, and simultaneously a light pulse at
(t, x) = (t′, x′) = (0, 0) is sent out. At some time later, it travels a distance L0 as measured in S ′.

S S ′

v

L0

Event 1

S S ′

v

L0

Event 2

In the S frame, event 2 happens at a coordinate (∆t,∆x). Note that this is both improper time and length, since the events are not
occurring in the same location, and S is not moving with the length L0. In the S ′ frame though, event 2 happens at the coordinates
(∆t′, L0). Note the proper time here because S ′ moves with the length L0. Given the formula for length contraction though, we
can go ahead and calculate what ∆x should be:

∆x = v∆t+ L = v∆t+
L0

γ
= v∆t+

∆x′

γ
=⇒ ∆x′ = γ(∆x− v∆t)

And we arrive at the familiar formula for a Lorentz boost in the x-direction. For the time portion, we have ∆t′ = L0

c for Bob, and
for Alice we have:

∆t =
∆x

c
=

1

c

(
v∆t+

L0

γ

)
=

v

c
∆t+

∆t′

γ
=⇒ ∆t′ =

(
1− v

c

)
∆t · γ

Hence, we have:

∆t =
∆x′

c
=

γ

c
(∆x− v∆t) = γ

(
∆x

c
− v

c
∆t

)
= γ

(
∆t− v

c

∆x

c

)
= γ

(
∆t− v

c2
∆x
)

Here, we arrive at the formula for the Lorentz boost for time. Both of these formulas can be summarized into one transformation,
called the Lorentz Boost or Lorentz Transformation:

∆t′ = γ
(
∆t− v

c2∆x
)

∆x′ = γ(∆x− v∆t)

∆y′ = ∆y

∆z′ = ∆z

, γ =
1√

1− v2/c2

Note that this is only in the x-direction, but the other directions are the exact same derivation. One interesting thing about this
transformation is that the following holds true:

−(c∆t′)2 + (∆x′)2 = −(c∆t)2 + (∆x)2

This equality really tells us something about what the Lorentz transformation does to our coordinate system. Just like how under
rotation, the Euclidean distance: (∆x′)2 + (∆y′)2 + (∆z′)2 remains invariant, the above quantity is invariant under Lorentz
transformation. In this sense, we can think of (c∆t)2 + (∆x)2 as a notion of "length", which remains invariant under the Lorentz
transformation.

There also happens to be another way to write this equality, which is to use matrix notation:

(
c∆t ∆x ∆y ∆z

)
−1

1

1

1



c∆t

∆x

∆y

∆z

 = const.
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which can also be written more compactly as ηµν(∆x)µ(∆x)ν = const.. Our requirement that this remains invariant can then be
written as:

ηµν(∆x)µ(∆x)ν = ηρσ(∆x)ρ(∆x)σ

Notice that ∆x is the same on both sides, but the metric ηρσ does not use the same indices. So how does this equation reflect
invariance? As we’ll see in the next lecture, we’ve encoded the transformation in changing ηµν → ηρσ .
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Recall that last time, we discussed the quantity −(c∆t)2 + (∆x)2 and its invariance. More generally, we can adapt this invariance
to include all three dimensions:

(∆s)2 = −(c∆t)2 + (∆x)2 + (∆y)2 + (∆z)2 = ηµν(∆x)µ(∆x)ν

and this quantity is usually called the spacetime interval. As discussed last time as well, we require that this quantity be invariant
under Lorentz boosts and also spatial rotation. Here, we develop the formal notation to discuss Lorentz transformations. We’ve
already established that it is a transformation of some kind, so it’s natural to think about a point (∆x′) as being derived by
multiplying (∆x) by some matrix Λ:

(∆x′)µ = Λµ
ν (∆x)ν

Then, this notation implies that in the new frame, the spacetime interval is written as:

(
c∆t′ ∆x′ ∆y′ ∆z′

)
−1

1

1

1



c∆t′

∆x′

∆y′

∆z′

 = (∆x′)⊤η(∆x′) = (∆x)σ(Λ⊤)ρσηρνΛ
µ
ν (∆x)ν

Aside 35.1

Notice that (∆x′)⊤ should be written as a dual vector, but we still write it using an upper index (∆x′)⊤ = (∆x)σ(Λ⊤)ρσ .
The reason for this is because we want to treat the vector and dual vector on "equal footing", and treat the metric as the
object such that when we combine the vector and dual together we get a scalar. We will explore this more in depth at a later
lecture, so keep this in the back of your mind for now.

The statement of invariance means we want this to equal (∆x)σησν(∆x)ν , so we have the equality:

(∆x)σ(Λ⊤)ρσηρµΛ
µ
ν (∆x)ν = (∆x)σησν(∆x)ν

If we want these two quantities to be the same, then we should require that the Lorentz transformation does not change the metric.
We can see this as Λ⊤ηΛ is the "new" metric on the left, which we require it equal to the one on the right. So, this means we should
have the equality:

Λ⊤ηΛ = η

or in index notation,
(Λ⊤)ρσηρνΛ

µ
ν = ησν

Because (Λ⊤)ρσ = Λρ
σ (by virtue of transpose) then this equation becomes:

ηρµΛ
ρ
σΛ

µ
ν = ησν

With this conclusion, we can say that the Lorentz transformation Λµ
ν is one that both preserves the metric above, and also preserves

the handedness (i.e. we want transformations that preserve x → x and not x → −x). In terms of the actual form for Λ, there are six
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of them:

Λ =


coshϕ − sinhϕ 0 0

− sinhϕ coshϕ 0 0

0 0 1 0

0 0 0 1

 ,


coshϕ 0 − sinhϕ 0

0 1 0 0

− sinhϕ 0 coshϕ 0

0 0 0 1

 ,


coshϕ 0 0 − sinhϕ

0 1 0 0

0 0 1 0

− sinhϕ 0 0 coshϕ



Λ =


cos θ sin θ 0 0

− sin θ cos θ 0 0

0 0 1 0

0 0 0 1

 ,


cos θ 0 sin θ 0

0 1 0 0

− sin θ 0 cos θ 0

0 0 0 1

 ,


cos θ 0 0 sin θ

0 1 0 0

0 0 1 0

− sin θ 0 0 cos θ


The top row are Lorentz boosts in the x, y, z directions respectively, and the bottom row are rotations about the z axis, x axis
and y axes, respectively. As for the Lorentz boosts, it’s easy to check that (∆s′)2 = (∆s)2 easily. Firstly, let’s write out what the
transformed vector looks like: 

c∆t′

∆x′

∆y′

∆z′

 =


coshϕ − sinhϕ

− sinhϕ coshϕ

1

1



c∆t

∆x

∆y

∆z

 (35.1)

So (∆s′)2 is written as:

−(c∆t′)2 + (∆x′)2 = − cosh2 ϕ(c∆t)2 − sinh2 ϕ(∆x)2 + 2 coshϕ(c∆t) sinhϕ(∆x) + sinh2 ϕ(c∆t)2

+ cosh2 ϕ− 2 coshϕ sinhϕ(c∆t)(∆x)

= [cosh2 ϕ− sinh2 ϕ](c∆t)2 + [cosh2 ϕ− sinh2 ϕ](∆x)2

Then using the identity that cosh2 ϕ − sinh2 ϕ = 1, then (∆s′)2 = (∆s)2, as required. There is also a physical meaning to this
parameter ϕ that we’ve seemingly mysteriously introduced, which we can see from the physical interpretation of a Lorentz boost:

c∆t′

∆x′

∆y

∆z′

 =


γ
(
c∆t− v

c∆x
)

γ
(
− v

c2 (c∆t) + ∆x
)

∆y

∆z


so comparing this with Eq. (35.1), we see that:

coshϕ = γ sinhϕ =
γv

c

this implies tanhϕ = γv/c
γ = v/c, so ϕ = tanh−1(v/c).

35.1 4-Vectors

So far in our discussion, the only 4-vector that we’ve encountered is this quantity (∆x)µ that we’ve been talking about. More
generally however, a 4-vector is defined as any vector that transforms in the same way as (∆x)µ under a Lorentz transformation.
That is:

V µ → V ′µ = Λµ
νV

ν

Not all V are valid 4-vectors! Take the following non-example: define ũµ as follows:

ũµ ≡ dxµ

dt
=

(
c

u

)
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where ui = dxi

dt . Then, under a Lorentz boost in the x-direction, we have:

ũ′µ =


d(ct′)
dt
dx′

dt′
dy′

dt′

dz′

dt′

 =


c

γ(dx−v dt)
γ( dt− v

c2
dx)

dy
γ(dt− v

c2
dx)

dz
γ(dt− v

c2
dx)

 =



c

ux − v

1− vux

c2

uy

γ
(
1− vux

c2

)
uz

γ
(
1− vux

c2

)


The x-component transforms as:

ux → ux − v

1− vux

c2

is the familiar formula for velocity addition in lower division classes. Notice that a transformation like this is non-linear (this should
be obvious), and hence it doesn’t transform like (∆x)µ so it is not a valid 4-vector.

As with all vectors, we can define an "inner product" with these vectors, which we define as ηµνV µW ν . This inner product is
particularly convenient because it’s Lorentz invariant:

ηµνV
′µW ′ν = ηµν

(
Λµ
ρV

ρ
)
(Λν

σW
σ) = ηµνΛ

µ
ρΛ

ν
σV

ρWσ = ηρσV
ρWσ

The invariance is nice because it means that regardless of how you Lorentz boost, this is a quantity you can calculate which is the
same in all reference frames. For a particular 4-vector, we define it as space-like, time-like, or light-like based on its inner product
with itself:

V 2 = ηµνV
µV ν =


< 0 time-like

= 0 light-like

> 0 space-like

Finally, one last thing which we will take up next lecture: for V µ = (∆x)µ, we are constrained by the spacetime interval:
−(c∆t)2 + (∆x)2 = const., this traces out the shape of a hyperbola! So when we perform a Lorentz transformation, what we
essentially do is move the vector (∆x)µ along its defined hyperbola, like in the diagram below:

x

ct

(∆x)µ
(∆x′)µ

36 April 28

Last time, we concluded our discussion of 4-vectors by visually seeing how they transform under a Lorentz transformation. Just
like how rotational invariance requires that our vector traces out a circle, the invariance of the spacetime interval requires that
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our vector travels along a hyperbola. When boosting in multiple dimensions, we move along a hyperboloid – a surface created by
rotating about the ct axis. For time-like events, there is also a corresponding hyperbola:

x

ct

(∆x)µ

(∆x′)µ

Here, you can see that the hyperboloid is connected, so events can be Lorentz transformed into the past. This implies that for
space-like events, there is no well defined causal structure. On the other hand, time-like events lie on a hyperboloid that is divided,
so we do have a causal structure for time-like events.

The transformations described up until now are denoted as active transformations. They are transformations that move the vector
itself, while keeping the coordinate system fixed. On the contrary, we can also imagine a passive picture, where we alter the
coordinate system instead of the vector itself. To do this, we look back at the Lorentz transformation equations:

t′ = γ
(
t− v

c
x
)

x′ = γ(x− vt)

Now, the x-axis corresponds to t = 0, so we have x′ = γx. Likewise, the y-axis corresponds to x = 0 so t′ = γt. Therefore, our
new axes transform to γx and γt:

x

ct x = ct

x′

ct′

ϕ

The angle ϕ between the original and the altered axis is the same ϕ we encountered earlier: ϕ = tan−1(v/c). In the passive
picture, the event doesn’t shift, but our axes and coordinate system shifts to compensate. Just like the active frame though, this
transformation allows for the breaking of simultaneity, which you can show by tracing the grid line to the axis and figure out when
that event occurs in the boosted frame.

36.1 Dual Vectors

Now, we come to the formal discussion of dual vectors. Remember from earlier, we denoted the spacetime interval as ds2 = ηµνx
µxν ,

where η is called themetric. Then, when we introduced 4-vectors, we introduced an inner product on them, defining it as ηµνV µW ν .
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One way to think about this inner product is as presented, where we slap an ηµν wherever we need it. Another way we think about
it is through the context of dual vectors, by reading the notation as (ηµνV µ)W ν . Here, ηµνV µ is now a new object which we will
call a dual vector, which we will define as Vν ≡ ηµνV

µ.

Now, notice what happens when we transform a vector into a dual vector. Suppose we start with the standard vector V µ =(
V 0 V 1 V 2 V 3

)
, and we now consider its dual:

Vµ = ηµνV
ν =

(
η0νV

ν η1νV
ν η2νV

ν η3νV
ν
)
=
(
−V 0 V 1 V 2 V 3

)
So compared to V µ, the dual Vµ has its time direction reversed. This has implications for how the dual vector transforms, since we
ultimately still want the dot product to be invariant. To see how the dual transforms, we will have to set up some machinery first.
Define the inverse matrix ηµν such that ηµνηνρ = δµρ . Ironically enough, the explicit form of ηµν actually looks the same as ηµν :

ηµν =


−1

1

1

1


but it should be understood as a different object entirely.

Aside 36.1

Now that we’re dealing with upper and lower indices, now’s a good time to talk about why we never really cared about the
ordering of the indices when taking a dot product. It’s because they are in fact equal:

ηµνV
µW ν = VνW

ν = Vν(ηνρWρ) = V ρWρ

Now, recall that Λ satisfies ηµνΛµ
ρΛ

ν
σ = ηρσ . Now, we multiply on the right by (Λ−1)σλ, and simplify it:

ηµνΛ
µ
ρΛ

ν
σ

(
Λ−1

)σ
λ
= ηρσ

(
Λ−1

)σ
λ

ηµνΛ
µ
ρδ

ν
λ = ηρσ

(
Λ−1

)σ
λ

ηµλΛ
µ
ρ = ηρσ

(
Λ−1

)σ
λ

Now, we define Λλρ ≡ ηµλΛ
µ
ρ , which gives us the relation:

Λλρ =
(
Λ−1

)
ρλ

(36.1)

This equation can roughly be interpreted as saying that the inverse of Λ is its transpose. Now with Λ−1 introduced, how does Vµ

transform under a Lorentz transformation?

V ′
µ = ηµνV

′ν = ηµνΛ
ν
ρV

ρ

= ΛµρV
ρ

=
(
Λ−1

)
ρν

V ρ

=
(
Λ−1

)ρ
ν
Vρ

So in contrast with V µ, the dual Vµ uses the inverse Λ−1 to transform. This way, the dot product:

V µWµ → V ′µW ′
µ =

(
Λµ
ρV

ρ
) ((

Λ−1
)λ
µ
Wλ

)
=
(
Λ−1

)λ
µ
Λµ
ρV

ρWλ

= δλρV
ρWλ

= V λWλ

Hence the invariance of the dot product is preserved.
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37 April 30

37.1 4-Velocity

Earlier, we saw that ũ = dxµ

dt is not a valid 4-vector, as it does not transform like xµ under Lorentz transforms. A better alternative
is to use the proper time instead: uµ = dxµ

dτ . This is guaranteed to be a valid 4-vector, since the numerator is a 4-vector and the
proper time is Lorentz invariant. Thus, Uµ transforms as Uµ → Λµ

νV
ν .

In component form, u can be written as:

u =

(
c dt
dτ

dxi

dτ

)
=

(
γc

dt
dτ

dxi

dτ

)
=

(
γc

γv

)
Now here’s the trick with 4-velocity: if we move together with the particle, then our relative speed with it will be zero, so the
4-velocity vector is:

uµ =

(
c

0

)
Now, if we take the dot product UµUµ = ηµνU

µUν = η00U
0U0 = −c2. But using the property that the dot product is Lorentz

invariant, it means that the inner product UµUµ = −c2 in all frames, even when the velocity vector is not zero! This gives us an
important rule to remember when calculating dot products: we want to always choose a frame in which it is easiest to calculate dot
products, and leverage Lorentz invariance.

37.2 4-Momentum

With the 4-velocity defined, it is then natural to define also the 4-momentum: Pµ = mUµ. This is particularly a natural form to
choose since it is a natural extension of our classical momentum p = mv. Like 4-velocity, we need to ensure that momentum is
conserved, so we want the 4-momentum to also behave as a 4-vector – this is easy to guarantee since we’ve already established Uµ

as a 4-vector.

The fact that Pµ transforms linearly under Lorentz transformations actually guarantees conservation of momentum! To see this,
consider a collision between two particles, that generates two other ones:

1

2

3

4

Suppose in the S frame, the 4-momentum Pµ
1 + Pµ

2 = Pµ
3 + Pµ

4 . Then, in the S ′ frame, we have:

P ′
1 + P ′

2 = Λ(P1) + Λ(P2) = Λ(P1 + P2) = Λ(P3 + P4) = P ′
3 + P ′

4

so the momentum is automatically conserved! The explicit form of Pµ is more or less the same as Uµ:

Pµ =

(
mv0

mU i

)
=

(
γmc

γmv

)
=

(
E/c

p

)

Here, we define E = γmc2 to be the relativistic energy and p = γmv to be the relativistic momentum. Notice how naturally
these formulas come out simply from our constraint that we want our vectors to transform linearly under the Lorentz transform;
hopefully this gives more insight into how these formulas came to be, and that they’re not as contrived as they appear to be in your
introductory classes.

Now’s also a good place to note that when v ≪ c, the classical formulas come out. When v ≪ c, then γ ≈ 1, so p ≈ mv. Likewise,
if we Taylor expand E:

E =

(
1 +

1

2

v2

c2

)
mc2 = mc2 +

1

2
mv2
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the first term represents the rest mass energy and is the formula E = mc2, and the second term is exactly the kinetic energy term
we’re all familiar with.

We can also write the speed of a particle in terms of E and p:

pc

E
=

γmvc

γmc2
=

v

c
=⇒ v =

pc2

E

Another thing: if we take pµpµ:

pµp
µ = ηµνp

µpν = −E2

c2
+ |p|2

On the other hand, we know that since pµ = mUµ, then the inner product is also equal to:

pµp
µ = mUµ(mUµ) = m2UµU

µ = −m2c2

So we can combine these two equations together:

−E2

c2
+ |p|2 = −m2c2 =⇒ E2 = |p|2c2 +m2c4 (37.1)

this should also be a familiar equation. One property about this equation is that because it is a result of equating two dot products,
this identity is Lorentz invariant, and holds true for any object in any frame.

So far, the above equations for particles with mass, but without mass, what happens? Well, Eq. (37.1) tells us that whenm = 0, then
E = |p|c, so its velocity:

v =
pc2

pc
= c

so massless particles travel at the speed of light!

37.3 4-Forces

With 4-momentum established, it is now natural for us to go even further, and generalize forces into a 4-vector. We call this fµ,
which we will define as:

fµ =
dpµ

dτ

again, as a classical generalization of Newton’s second law F = dp
dt . In component form:

dpµ

dτ
=

(
1
c
dE
dτ
dp
dτ

)
=

(
1
c
dt
dτ

dE
dt

dt
dτ

dp
dτ

)
=

(
γ
c
dE
dt

γ dp
dt

)

If there is no 4-force acting on our particle, then we expect that dpµ

dτ = 0, which is the equation of motion of a free particle.

37.4 Action of Free Relativistic Particles

According to the stationary action principle, the evolution of any physical system should be one such that the action is stationary.
That is, we require δS = 0. Note that we only require the derivative to be zero, not that it is minimized or maximized.8 According
to special relativity, because physics should behave the same in all inertial frames, then the action should also be Lorentz invariant.

When a particle travels through space, the path it traces out is called its worldline. Because it describes how the particle moves, a
natural candidate for the action would be the spacetime interval of its worldline:

Sparticle = −mc

∫
dS

here we have a prefactor ofmc for historical reasons, we don’t need to care about these prefactors very much. If we now parametrize
our action by λ, then the action may be written as:

Sparticle = −mc

∫ √
ηµν

dxµ

dλ

dxν

dλ
dλ

8The Lagrangian is always convex, so we can always guarantee minima or maxima, there won’t be any "saddle points".
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Then, when we vary the action using xµ(λ) → xµ + δxµ, then we have:

δS = −mc

∫
δ

√
−ηρσ

dxρ

dλ

dxσ

dλ
dλ

= −mc

∫
δ
(
−ηµν

dxµ

dλ
dxν

dλ

)
2
√
−ηρσ

dxρ

dλ
dxσ

dλ

= −mc

∫ −2ηµν
dxµ

dλ
d(δxν)

dλ

2
√
−ηρσ

dxρ

dλ
dxσ

dλ

Now we do integration by parts, which means we slap a differential around everything but the d(δxν

dλ term, giving us:

δS = mc

∫
d

dλ

 ηµν
dxµ

dλ√
−ηρσ

dxρ

dλ
dxσ

dλ

 δxν

If we then require that δS = 0 for any δxν , then the requirement is that everything else must equal to zero:

−mc

 ηµν
dxµ

dλ√
−ηρσ

dxρ

dλ
dxσ

dλ

 = 0

This equation may look ugly at first, but it is only written as such because we haven’t specified how we want to parametrize the
worldline. If we choose a simple parametrization like the proper time (i.e. λ = τ ), then we get:

−mc
d

dτ

(
ηµν

dxµ

dτ√
−ηρσUρUσ

)
= −m

dpν
dτ

= 0 =⇒ dpµ
dτ

= 0

so what comes out is a very natural equation: the statement that the net force on a free particle is zero.

38 May 2

38.1 Natural Units

In this lecture, we should mention that from here on out we will be using natural units, where c = ℏ = 1. This is so that we don’t
have to carry the constants everywhere we go, and it also has some beneifts in the way of dimensional analysis. In particular, since
c = 1, then the dimension for length is the same as time:

[L] = [T ]

which is particularly natural especially in relativity since length and time can be interchanged with each other. Setting ℏ = 1, which
usually carries the units of [E][T ], means that we now regard energy and time as inverses:

[E] = [T ]−1

From E = mc2, because c = 1, then this implies that [E] = [M ] and combining this with the previous relations we get the big
chain:

[L] = [T ] = [E]−1 = [M ]−1

38.2 Action of a Free scalar field

Consider a scalar field ϕ = ϕ(x) = ϕ(t,x). Our goal is to find an action that satisfies the three criteria:

1. Quadratic in ϕ. We want this because we want the equations of motion to be linear in ϕ, and hence we want the action to be
quadratic in ϕ.
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2. Lorentz invariant. We want this because the action gives us the equations of motion, through the stationary action principle,
and obviously we want them to be the same in all inertial frames.

3. Involve ∂µϕ. We want this because we want a time evolution ϕ̇ term. We don’t want to just use ∂tϕ since in relativity time
and space are interchangeable, so we use the general derivative ∂µϕ instead.

It turns out, the action that satisfies these three is:

S = −1

2

∫
d4x

[
ηµν∂µϕ∂νϕ+m2ϕ2

]
In natural units, S should be dimensionless, and you can check that the right hand side has units of [E][T ] so the equation is correct.
Now, just like any other action, we first vary the field by introducing ϕ(x) → ϕ(x) + δϕ(x):

δS = −1

2

∫
d4x δ

[
ηµν∂µϕ∂νϕ+m2ϕ2

]
= −1

2

∫
d4x

[
2ηµν∂µϕ δ(∂νϕ) + 2m2ϕ δϕ

]
Now, in the first term the variation of the derivative, δ(∂νϕ) can be written as:

δ(∂νϕ) = ∂ν(ϕ+ δϕ)− ∂νϕ = ∂ν(δϕ)

So we can write the entire integral as:

−
∫

d4x
[
∂ν (η

µν∂µϕ∂νϕ)− ∂ν (η
µν∂νϕ) δϕ+m2ϕ δϕ

]
Now we will take integration by parts. We will assume that we only vary the field locally, so at the extremes δϕ = 0, allowing us to
drop the boundary term. So, this gives us: ∫

d4x
[
ηµν∂µ∂νϕ−m2ϕ

]
δϕ

If we require δS = 0 for any variation in the field, then the term in square brackets must be zero. Removing the index notation, the
equation reads:

(−∂2
t +∇2 −m2)ϕ = 0

This is known as the Klein-Gordon Equation. Notice that it looks like a wave equation, except it has a mass term. The other thing
of note is that this equation is linear in ϕ, which explains why we wanted our action that is quadratic in ϕ from earlier. If we had
more higher order terms in the action, then they’d contribute to the right hand side effectively acting as source terms just like how
they appeared in the wave equations for the fields V andA.

For equations of motion without a source, then our solutions are plane waves:

ϕ = Aei(Et−p·x) = Ae−ipµpµ

Substituting this back into the equation, we get:

(E2 − |p|2 −m2)Aei(Et−p·x) = 0 =⇒ E2 − |p|2 −m2 = 0

This is exactly the relativistic equation for energy: E2 = p2c2 +m2c4.

38.3 Action of Massless 4-Vector Fields

The above section takes care of scalar fields, but as we’ve studied in electromagnetism, the electric and magnetic fields are vector
fields, so this section will be dedicated to writing its action and the resulting equations of motion. As we will see, Maxwell’s
equations will come right out at the end.

We will consider a "free" field at first, then add source terms later. Because we are working in a relativistic context, we should use
the 4-vector field Aµ instead of the standard 3-vector. This allows us to impose the following conditions:

1. Quadratic in Aµ because we want an equation of motion that is linear in Aµ.
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2. Lorentz invariance. We want Lorentz invariance here for the same reason as the scalar field.

3. Need to involve ∂νAν , just like we involved ∂µϕ from before.

4. The action should be massless. We want this in particular because we want to match electromagnetism, which has no mass
terms. As such, we will drop the 1

2m
2AµAµ term from the action.

So what kind of action can we write? If we want Lorentz invariance, that also satisfies the third condition, then one thing we can do
is write something like:

(∂ρAσ)(∂µAν)

but we can’t just leave it as is, since the action must be dimensionless. So, we need to find a way to contract these indices, of which
there are two ways:

1. (∂µAν)(∂µAν)

2. (∂µAµ)(∂νA
ν)

Note there is a third way Aµ(∂2Aµ), but if we expand this out:

Aµ(∂2Aµ) = Aµ(∂ν∂νAµ) = ∂ν(Aµ∂νAµ)− (∂νAµ)(∂νAµ)

We’ve now written this in the form of a total derivative term and the same equation as in method 1. Because we eventually get rid
of total derivative terms anyways, this way of contracting ends up being the same as the first, so there are really only two unique
ways to contract these indices. Our action can now be written as a combination of the two ways:

S = −1

2

∫
d4x [a (∂µAν) (∂

µAν) + b (∂µA
µ) (∂νA

ν)]

Now, we vary the action:

δS = −1

2

∫
d4x [a(∂µAν)δ(∂

µAν) + b(∂µA
µ)δ(∂νA

ν)]

Now we do integration by parts and remove the total derivative:

δS =

∫
d4x [a∂µ(∂µAν)δA

ν + b∂ν(∂µA
µ)δAν ]

=

∫
d4x [a∂µ∂µAν + b∂ν (∂µA

µ)] δAν

Now, requiring that δS = 0 for any δAν means we get:

∂µ∂µAν + b∂ν(∂µA
µ) = 0

The free equation of motion is then (we raised the free index ν here, it does nothing except makes the equation a bit nicer to look at):

a∂µ∂µA
ν + b∂ν(∂µA

µ) = 0

So this is the free equation. Now, we want to add the effect of sources, which we will do by adding them to the right side of this
equation. Because the left hand side is a 4-vector, then the thing we add on the right must also be a 4-vector:

a∂µ∂µA
ν + b∂ν(∂µA

µ) = Jν (38.1)

Adding Jν here is analogous to what we had with the Lorentz gauge back in chapter 10:

(∂2
t −∇2)ϕ = ρ

(∂2
t −∇2)A = J

where terms like the charge and current density can be regarded as "sources". We will also require Jν to be conserved, such that:

∂νJ
ν = 0
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One way to argue that we need this constraint is to think about charges and currents: we want these quantities to be conserves,
so its generalized version Jν should also be conserved. The above equation for conservation also has a nice meaning if we allow
Jν = (ρ,J) when we expand out the summation notation:

∂tρ+∇ · J = 0

this is the standard continuity equation! Hopefully this small demonstration shows why we need this constraint, and that it is
indeed a well-motivated result. Now, for consistency, if we take ∂ν of both sides of Eq. (38.1):

∂ν (a∂
µ∂µA

ν + b∂ν (∂µA
µ)) = ∂νJ

ν = 0

So this gives us the relation:
a∂2(∂νA

ν) + b∂2(∂µA
µ) = 0

both terms here ∂νAν and ∂µAµ are of the same form, so the only combination of a, b that makes this zero is a = −b. By convention,
we will let a = 1 and b = −1. So in summary, the action with the conserved current reads:

S = −1

2

∫
d4 (∂µAν∂

µAν − (∂µA
µ)(∂νA

ν)) +

∫
d4xAµJ

µ

Now, we define Fµν ≡ ∂µAν − ∂νAµ. Then, FµνFµν gives:

FµνFµν = (∂µAν − ∂νAµ) (∂
µAν − ∂νAµ)

= 2(∂µAν)(∂
µAν)− 2(∂νAµ)(∂

νAµ)

= 2(∂µAν)(∂
µAν)− 2(∂µAµ)(∂νA

ν)

This is exactly twice the first integral, so we can rewrite the action as:

S = −1

4

∫
d4xFµνF

µν +

∫
d4xAµJ

µ

Now, forcing δS = 0 eventually gets us:9

∂µF
µν = Jµ (38.2)

In addition, because of the antisymmetry of Fµν (which you can see from its definition), we have the relation:

∂λFµν + ∂νFλµ + ∂µFνλ = 0 (38.3)

As it turns out, Eqs. (38.2) and (38.3) are exactly Maxwell’s equations in index notation! In particular, Eq. (38.2) gives Gauss’s and the
Ampere-Maxwell law, since these two equations deal with source terms. The other two are given by Eq. (38.3). To see this worked
out explicitly, let Aµ = (V,A) and Aµ = (−V,A), then from Eq. (38.2) we have:

F0i = ∂0Ai − ∂iA0 = ∂tAi − ∂iV = ∂tAi −∇V = Ei (38.4)

Fij = ∂iAj − ∂jAi = ϵijkB
k (38.5)

So, putting Eq. (38.4) into Eq. (38.2) gives us:

∂0F
00 + ∂iF

0i = ρ =⇒ ∂iEi = ∇ ·E = ρ

Working this out with the other indices gives you Ampere-Maxwell too. For Eq. (38.3), if you let λµν = 0ij and iterate, then you get:

∂0Fij + ∂jF0i + ∂iFi0

Then, using Eqs. (38.4) and (38.5), then this becomes:

−∂t
(
ϵijkB

k
)
+ ∂jEi − ∂iEj = 0

9we skipped the algebra in class in the interest of time.
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Contracting with ϵijmϵijk , then this becomes:

−2∂tB
m − ϵijm (∂iEj − ∂jEi)

Finally, ∂iEj − ∂jEi = 2∂iEj , so we indeed get Faraday’s law:

∇×E = −∂tB

likewise, ∇ ·B = 0 follows as well from the other indices. And that concludes our derivation of Maxwell’s equations! It’s nice that
we’ve essentially come full circle from the beginning: we started with Maxwell’s equations, and finished by deriving them. What is
truly remarkable is that these equations naturally fall out as a result of our two constraints on the action and the current, where
neither of them directly reference the equations at all – they are simply a product of these two constraints. If that’s not beautiful, I
don’t know what is.

73


	January 22
	January 24
	Poynting's Theorem

	January 27
	Continuity Equation for Momentum

	January 29
	Stress Tensors

	January 31
	Energy and Momentum for the EM Field
	EM Waves

	February 3
	Expression of Scalar Sinusoidal Plane Waves
	EM Waves in a Vacuum

	February 05
	Dipole Radiation

	February 7
	The "Delayed" Wave
	A Microscopic Model

	February 10
	Normal Incidence

	February 12
	Oblique Incidence
	Polarized Light

	February 14
	Brewster's Angle
	Reflection and Transmission Coefficient
	Total Internal Reflection

	February 19
	Frustrated TIR
	Wave Propagating through a Conductor

	February 21
	EM Waves in a Conductor
	Magnetic Phase Shift

	February 24
	Normal Incidence on a Conductor
	Anomalous Dispersion

	February 26
	Wave Guides
	Wave Modes

	February 28
	Rectangular Wave Guide
	Cutoff Frequency
	Phase Velocity

	March 3
	Coaxial Wave Guide
	Chapter 10: Potential Formulation of EM
	The case for potentials
	 E  and  B  using Potentials

	March 5
	Gauge Transformations
	Coulomb Gauge

	March 7
	The Lorentz Gauge
	Retarded Potentials and Fields
	Solving the Green's Function Equation

	March 10
	Complex Analysis
	Integrals of Complex Functions

	March 17
	March 19
	March 21
	March 31
	The Potential of a Moving Point Charge

	April 2
	April 4
	Field of Moving Charges

	April 7
	April 9
	Rayleigh and Mie Scattering
	Magnetic Dipoles

	April 11
	Radiation for an Arbitrary Source Distribution

	April 14
	Radiation of a Moving Point Charge

	April 16
	Lienard Formulation
	Bremsstrahlung (Braking Radiation)

	April 18
	Self-Force/Radiation Reaction
	The Dumbbell Model

	April 21
	Self-Force
	Special Relativity
	Time Dilation

	April 23
	Time Dilation/Proper time
	Length Contraction
	Lorentz Boost/Transformation

	April 25
	4-Vectors

	April 28
	Dual Vectors

	April 30
	4-Velocity
	4-Momentum
	4-Forces
	Action of Free Relativistic Particles

	May 2
	Natural Units
	Action of a Free scalar field
	Action of Massless 4-Vector Fields


